How to build a Simple Backyard Bio Sand Water Filtration System from easily available materials .

    This project goes over the build of an emergency cheap bio sand water filtration system. This can filter out your polluted water from your stream or lake or gutter. Bio sand filters are good for filtering parasites, bacteria, protozoa virus and fine sediments from well water.

    These work by doing four stages of purification. First is the biological zone where bacteria eats your parasites and pathogens viruses. That happens on the surface of the bio zone. The second is mechanical trapping where sediment can be attracted to porous rock, and it will filter out sediment absorption, third one is absorption where the electrostatic charge which will attract small particles and viruses down to virus level and get attracted to this sand and last stage is natural death from nutrient depletion when there won’t be anything for bacteria or virus to eat or thrive on when they start to go through the sand dairy of the filter.

    There is two five gallon buckets, one stacked on top of the other. These are black food storage buckets. These buckets don’t tend to promote the growth of algae as much as the opaque buckets do. The top bucket is the water storage bucket, the top one is the filter.

    There is an eighth inch hole on the lid at the top bucket that allows water to flow freely without creating a vacuum. There is a 16th of an inch hole at the bottom of the bucket that slowly let the water drip out onto the top of the next bucket.

    The bottom bucket has 8 one quarter inch holes along the sides. This allows the water to disperse over the top ,they drip down to the these holes along the side of the bucket such that they dont disturb the biozone underneath. It’ll take about three weeks to establish a bio zone. And during that three week period, you’re going to have to continually feed some polluted water in there with bacteria in it to feed the bio zone to make it develop and grow.

    It would put a large circular ring in the center of your bio filter and distribute the bacteria off to the side. Now this filter relies upon bacteria that forms on the top of the sand to eat the other bacteria like Giardia and Cryptosporidium.

    A pipe at the center will prevent the sand from coming up into the faucet and getting into the drinking water. We here have two layers of sand. The bio zone is going to have a couple inches of fine sand on it to promote the growth of the bacteria. The course sand underneath will filter out sediment and other bacteria. Bottom layer is an inch of fine and pea gravel.

    The second stage of this filter starts with the build of a 4 way distribution pipe made of PVC pipes and a four way coupler. We cut holes in these pipe ,one towards the end and the other towards the center. This will distribute the water over the top of the bucket and so that the water isn’t just going in in one spot and trickling down one side or down the center and not evenly distributing it over the top of the sand

    Drill a hole at the bottom of the 2nd bucket and put a quarter inch brass drain plug .This can be used to drain water out the barrels if I want to store them or to flush them out.

    We put put 3 levels of gravel and 3 levels of sand in the second stage. Put two to three inches of each layer of gravel. Add an inch of activated carbon on top of this fine gravel. Treat both the filter with chlorinated water and fresh water and let it sit for few minutes. Stack the second stage filter on top of the first stage. Make sure the whole setup is tightly sealed.

    Further purify the water by letting it sit under the sun. The ultraviolet ray purify the remaining bacteria that might be in there.

    • DIY Video: How to build a Homemade Gravity fed ,Drip Waste Oil Heater for your Garage .Clean and Efficient
      This project goes over the build of a simple gravity drip fed waste oil burner that can be used to heat your shop/garage efficiently.It heats up the garage to about 30 to 40 degrees. Hot air from the center pipe reaches up to 500 degree celsius. Once dialed in, the smoke clears and the burner is stable at 400'C. The materials needed for this project are grinder,MiG welder,plasma cutter, scrap propane tank,hammer,enclosed brake disc, steel cooking pan, 4 inch 10ft pipe, bolts and iron rod and temperature sensor to keep track of the heat. The footing and the chimney pipe is welded onto the propane tank.Add a pipe right through the middle and weld the retainers for the pan and the legs around the vessel. To improve the airflow , we cut bunch of holes around the legs. Also added some more spaces on the legs to keep the temperature away from the concrete floor. We also make a venting hole on both sides at the middle of the propane tank . To adjust the temperature, we add 2 7/16 primary holes right at the base above the heating pan. You control the burner by adjusting the input airflow into the burning chamber. Don't make the air holes for the draft on the burner too big but have plenty of holes so that with the increase the temperature and the increase in airspeed, the draft the fresh air can actually get to the burner, and you will get cleaner burn. These secondary holes allow for more oil splatter to leave the burner if any water content is present. The drip system is kept open which helps you to check how much oil flow is there and also as a safety precaution. If there is any kind of flashback, it will pop out of here and not go all the way through the the pipe back into the reservoir. This whole system is completely serviceable, completely mobile,not bolted down.You can unhook the chimney, the exhaust pipe, remove the drip system pipe and the rest. The drip system is made of heavy pipe and a small ball valve that is welded in place at the distance and at a specific height so as to dissipate the heat coming from the burner. Also you dont want the oil to reverse its direction and go back into the pipe. With the help of a fans, we increase the heat dispersion. With two fans,one blows hot air away from the wall and the other allows extra air for the burn.It pulls cold air from the floor and allows fresh air intake. Effective heating and keep the heat away from the wall. To start the system, we pour the waste oil onto the steel pan and place it under the burner. Make sure you dont have any trace of water in the pan or oil. The oil will splatter out of the secondary holes if there is water.The more you can bring in to the burning chamber,the more it will burn and more it will smoke.
    • DIY Video: How to build a really efficient Portable Multi Purpose Ammo Box Wood Stove
      This project goes into the build of an efficient portable ammo can wood stove that can warm your space, act as a cooking stove, baking oven and an alternative for ground fires at camp sites. This ammo stove is compact and doesn't take up additional storage . All the basic components used in this stove are modular and can be stored inside the stove when not in use. These components are easily available in your local hardware store. The basic components needed to build this stove are as follows. The ammo box called the "fat 50 "is purchased from an army surplus store for $30 , the titanium stove pipe for $100 , the metal for the control dial and the door is salvaged from old barbecues. Rest of the basic tools needed are grinder, blow torch, hack saw ,rivet gun and a drill press. Not only you can use wood logs, paper, twigs but it also runs on wood pellets. The system has a gravity fed hopper that feeds the pellets intermittently for consistent heat over a longer period of time. For maximizing the burn, a divided combustion chamber is used. This forces the burn to go around a sealed baffle before it exits out the stove pipe providing less smoke and retaining more heat. A thick steel plate is used as a cook top which is rescued from an old barbeque . This plate absorbs the heat for cooking and is removable thereby protecting the stove top. Additional feature is a baking oven underneath the stove. The first step to build is simply removing the lid of the ammo can stove which just slides of the hinges. Remove the rubber gasket on the back side of the lid using a plier . This rubber gasket is replaced using 3/8th inch stove rope. This provides heat resistant seal from smoke. Remove the handle by drilling along the spot welds on the sides of the handle just enough to weaken them and pull it using a screwdriver . Two holes of three inches are drilled at the top surface of the stove . These are done to fit in the titanium stove pipe and for the gravity fed hopper system. We use a three inch propane fuel cylinder tube to make a pipe collar as a guide to trace out the holes. These pipe collars acts as hopper support for gravity fed pellet mechanism and for securing the stove pipe. The hole for the first pipe is about five and half inches away from the door hinge and the second one , one and half inches away. The holes are then cut using a jigsaw. The flanges in the stove pipe collars are made by securing them against a wooden fixture and bent them using a hammer. The edges are heated with a torch to anneal the metal for hardening. Before inserting the stove collars into the lid, the metal sheet inside the lid was removed. Using fiber glass cloth, a smoke seal is made around the collars. The collars are then inserted and the metal sheet is reinstated with help of some stainless steel rivets. A adjustable damper is installed inside one of the collars .These damper provide control to both burning speed and fire intensity. Also the damper in a closed state also acts a base for a steamer or a boiler. The damper is made using a thin steel cut out of a disc , the size of the inside pipe diameter. The shaft from a barbeque skewer is inserted along slots drilled in the disc holding them underneath the collar. Inside the combustion chamber ,we have two dividers installed. One divides the combustion chamber and the bottom one separates the oven from the stove . The top divider acts as an inner wall . The combustion has to travel around the corner and then go outside through the stove pipe at the end. This collects more heat and has less smoke build up inside. The side door openings are four inches high and three and three eighth inches wide. The door is made out of thick steel plate which was salvaged from an old barbeque. The door has three holes for the air intake and it is supported by a regular door hinge. A small circle metal piece at the front regulates the amount of flow that goes into the stove. A secondary burn system is introduced inside the stove so that the air coming into the upper part of the combustion chamber where all the smokes ascends gets reignited . This drastically improves the efficiency of the stove. Here we use couple of half inch black iron pipe that is connected with 2 90 degree elbow and an end cap. Holes are drilled on the pipe so that the fresh air is introduced into the chamber. A hole at the side of the stove is made the air intake. The pipe is inserted into the chamber and secured in place using a coupling and a spacer. A 3 X 4 inch duct adapter is used as a funnel for the gravity fed hopper system. To make this efficient , we add a small cage made of door basket inside the chamber so that all the pellets wont drop suddenly to the bottom. The cage is made from the metal rods from the basket. The rods are spaced 8mm apart and put straps across both sides and secured it using rivets. To prevent the overflow of pellets inside the cage, a two and half inch tailpipe is placed at a specific distance below the hopper. This helps the pellet build up in the cage but not overflow. Now there is a sustained release of pellets at all time for a consistent burn. Stainless steel tent stakes are placed at the bottom of the stove riveted to a metal plate. This prevents the bottom from burning out and also improves air flow. Also acts as ash collector. To use this stove as a light source, we make a small window out of half mm natural mica glass. We use a fiberglass cloth to form a seal around window. It is held by green painters tape. After positioning the glass, spacers are added around the edge . These metal strips allow for the mica to expand and contract. Another metal frame is used to hold all these in place. The portable stove pipe is made out of titanium rolls. The titanium prevents corrosion and also distributes the heat efficiently. To make a long cylinder without denting the foil, unroll the film across the ground, roll it small enough to get the clips on ,spacing them evenly along the length of the pipe.
    • How to build a Homemade Chainsaw Mill from Scratch. Step by step Build Instructions
      This project goes over the build of a simple and basic DIY chainsaw mill from start to finish. This chainsaw mill is portable and doesn't require very large space . This is a very inexpensive way of producing lumber from logs and can be made from easily available materials from your local hardware store. The materials you need to build this chainsaw mill are one by one square tubing, half inch square tubing, quarter inch flat bar, weld nuts, bandsaw and welding unit. The welder used here is Millermatic 212 auto set mig welder and the saw is Homelite 1130g The dimensions of the saw are as follows. A 12 inch deck to slide across the log that acts as a milling surface. The max width of the mill is 26 inch. An 8 inch metal to grab the bandsaw on both the sides. A quarter inch flat stocks for the holding the saw. We start by cutting 26 inch pieces for the sides and 12 inch pieces for the sides. Assemble them into a rectangle and weld it using a MiG welder. Do Check if the corners to make sure it is square and the sides are even. A center bar welded into the rectangular guide plate, just to give it a little bit more support and make it so that it doesn't twist. Two guide posts are welded onto the sides. 2 larger pipe sections of dimension one by one is cut .This will slide within the guide posts. This is done so as to make the saw adjustable to how thick it cuts a slab .The side posts also gives you adjustability on the deck to move up and down. 4 quarter inch flat bars of length nine inches are cut . Two of them are bolted onto bottom section of the rails that slides up and down on the guide posts . The saw blade is placed securely between these bars. A small spacer block is welded onto the bars so that it doesn't touch the saw blade. Three eighth inch weld nuts are welded onto the side posts . Tightening with the bolts locks the adjustable rails in place. A crossbar is welded onto the guide posts .These help push the bar along when you are operating the mill and it is a nice place to put your hand , It feels like you are farther away from the chain. The chain saw blade is inserted between the flat brackets at the bottom and it is locked tight in place between the spacers using 3/8th inch bolts. For the first cut, we attach a flat plate at the top of the log so that the bar has something to ride. The height of the cut is adjusted with the help of the side rails on the mill . The saw is then started and placed on top of the flat plate to begin cutting the log.