How to build a simple Homemade PVC Off grid River Pump to pump water from a river or creek

    This project goes over the build of a river pump that can be used to pump water from a nearby river or creek anywhere you want without any external power.It works off of a circular tube, gulping air and water as it rotates.

    It works by harnessing the flow of the river and creating air pressure to push the water further.It pushes water out from the river and up through your hose system, which you can direct where needed.

    To use a river pump, all you need is a nearby river or creek that has flowing water and a location that is deep enough to support your river pump.

    Here are the parts needed for this water pump:
    A 3 inch to 4inch reducer
    A 4 inch to 6 inch reducer
    40 foot ,3/8 inch tubing
    3 inch socket to thread /cap
    Garden hose adapter
    Quick release couplings
    Six,four,two inch pipes

    Take your angle grinder and cut them to four pieces.Connect the pieces together using a PVC cement solvent and make it into a cone that steps down as it goes.

    A window screen is used as a shield on the back.So this design is supposed to be rather streamlined in order to keep debris and stuff from getting caught as the pump works

    The cap at the end of the cone is attached to the swivel piece. It needs to be able to swivel freely on top of this. The hose tightens into this metal swivel piece and gets locked down.

    Next is building fan blades for the front of this pump to spin it.Cut the PVC into 4 equal blades that is 8 inches tall.

    Bolt the swivel piece along with the blade we have just cut.

    Water comes flowing in and hits the blades that is attached to the rotating swivel, makes it move and rotate and then hits the next one in line.

    The end piece is attached to the the PVC cone that we made earlier.Next step is getting our 40 foot hose tubing to get inside the pipe and attach to the swivel end.

    Next step is wrapping the 40 foot hose around the pump .We need to wrap the hose in such a way once the water hits the swivel end,the hose has got to pick up water.

    The Garden Hose is connected to the swivel end of the pump.Place the system along the direction the flow of the river or creek.



    RECENT POSTS YOU MIGHT LIKE
    • DIY Video :How to build a Wood Stove that runs a generator, produces gasoline,runs a fridge and act as a water heater at the same time
      This is a wood powered gasifier stove that produces gasoline runs your generator, runs your propane hot water heater, heats hot water for you all off the grid. A simple design of a mini gasifying woodstove prototype here you've got some open latches, open up the door, the doors got the baton handle so it naturally stops on the downfall Inside the firebox, I've got a gasification style system built in there.One of the key things about a gasifying woodstove is that not only can I run it in a typical gasification wood stove manner, heat my home. But if I reverse that action with a fan and a draw system underneath the stove, with the ability to shut off the flow out the chimney pipe, and then draw down underneath the stove, reverse the action of the system, I can produce syn gas that can go outside and into a generator. This system has little latch up here at the top drops open so you can get in there work the material around.By actually pulling the little latch out and the bottom of the main gasifier inside of there to shut it and rotate it locks into place .It is actually a dump plate on the bottom of the main gasification chamber so that all the ash and all the coal that's not burned can dump out of the system into a tray below. A secondary burn system with two layers of stove pipe, one smaller inner diameter stove pipe and one larger one is made for a better burn to take place with fresh air inlets right there in the chamber. The outer sleeve stops below the bottom allows air to travel up in between rise up to the pipe.There is a set of burner holes that makes sure to mix fresh oxygen that creates a swirl in there and helps burn any leftover syn gas in the production system. So there's no smoke coming out of this in the end. Inside the woodstove is the inner chamber holds all your material, it gets hot and then creates an airdrop between this outer wall and the inner chamber wall that airdrop comes out these holes mixes fresh oxygen into the top of the system with the smoke and burns it. The bottom holes allow air to dry in from the bottom to complete that burn as the material burns down to the bottom. It also works slightly as a venturi system as air is drawn up these walls towards these holes, creates a vacuum down here at the bottom holes and pull some of the smoke out a downward draw into the system and pull some of it into here helping mix some of the smoke With the air and will swirl it so it'll burn cleanly. The single air inlet hole is used to pull the smoke out of the bottom to reverse this process to put syn gas out of this stove outside into a generator. There is inner set of holes in the bottom of the stove pipe.This helps mix air between the walls.The air gets drawn up between the wall since the inner pipe is longer than the outer pipe which mixes fresh air and completes the secondary burn to make sure there's no smoke coming out of this pipe. This is gonna be the bio crude oil production system here which is basically another term for a creosote that you produce from syn gas production, otherwise known as gasification production. It's got just a single pipe rolling out of the backside of it which is connected to a creosote collection container. As this gas starts to cool, it's going to come up to here it's going to work its way up hill, as it does so the hydrogen inside of the gas will be the lightest of all the gas is traveling uphill and definitely make it over the top much of the creosote we built re drip down into the second collection container here. Now the rest of its gonna go up cross through the pipe here and come down to a condenser The reactor shown here is made of two of five gallon steel cans.I cut the top off of one and the bottom off of another and slid them over each other. So they make a really long slide seal over each other one pipe, as you can tell here, welded in. With an elbow, it's a one inch pipe coming out of the back of they're welded in with an elbow. The downward slope of the pipe force the smoke to release as much of this crude as it possibly can. Because it's actually wanting to go uphill, which would be easy to smoke not going to cool real quickly. by forcing it slightly downhill, we're forcing a lot of that heat energy out, making sure it's releasing a lot of that, let's call it creosote or bio crude. It also allows for the creosote to roll down the bottom of the pipe into a container. The gas moves through a reduction point which reduces the pressure.The gas gets refined and reduced slightly in volume through the system. Hydrogen, carbon monoxide and all the rest of the lighter gases are going to easily flow up this pipe through thermodynamic pressure. Now you've cooled a lot of that gas by running it downhill, trying to bring in into this lower container as much the second grade creosote as you can, or biocrude. Now by running it up hill again, you can really force all the heavy hydrocarbons and other elements inside of this to focus out of the hydrogen gas and the carbon monoxide. This is a downhill pipe that's going to go anti the direction of natural thermodynamic processes that'll help condense out or precipitate out some of the oils at a much faster rate than it would be if that pipe was going the natural thermodynamic flow direction.The first catch is going to be the heaviest and thickness of the current Crude oil. It goes down that pipe from a reduction point here into the secondary catch.This comes up the hill here at the lighter gases not yet condensed, rises across loses a lot of energy and now is once again restricted into a quarter inch copper gas pipe into a 5 gallon water tank with a 20 loop condenser coil inside . The pipe out of that tank runs into a one gallon pickle jar. The next pipe comes out of the top of the jar, we're not actually trying to put it down too far because you don't want to bubble and once it starts to fill with crude oil, you just want to grab them the lightest of the gases, the hydrogens and the nitrogen, carbon monoxides and others that are still left within this system you want to grab, grab that right off the top. Now it comes up this pipe here goes through the T and once again we have a secondary condenser that this goes through now it's about four or five loops going through there, comes out through there. And that's where the liquids gonna condense from this condenser that's where it's going to be caught. The liquid will be flowing, dropping the jug and the lighter Smoke will continue on now down the pipe. The result of the bio crude oil project collecting 4 grades of oil.So the next step of this project now is to put this all through the refinery, which will actually be connected inside the woodstove that made all of this. So in the end, what we'll have is all the liquid being produced the crude oil once again, flow back to the woodstove go through the refinery out the refinery tower, and on the other side, we'll have a high grade fuel to use in any engine. https://www.youtube.com/watch?v=M1imlOX2pGI
    • DIY Video : How to build an Ammo Can Double Burner Rocket Stove from scratch . Step by step Build Video Instructions
      This video shows the step by step build of a Double Burner Rocket Stove made from an Old Ammo Can.The can is around 19″ x 10″ x 10″, I use vermiculite as insulation, some use sand instead but I like vermic as it is fairly light.If you remove some of the insulation and it’ll be a mini barrel stove for heating too.Here i use a Black and Decker Scorpion saw to cut the pipes and just a cheap bi-metal hole saw to do the holes. I’ve cooked a full steak dinner in the woods on it and it worked great.

      Watch the Homemade Ammo Can Double Burner Rocket Stove build

    • How to build a Super Efficient Portable Rocket Mass Heater from reclaimed and repurposed items and save up to 80% on your heating bills
      This project goes over the build of a homemade efficient rocket mass heater which is portable ,uses less fuel and burns clean. This heater is made out of reclaimed and repurposed materials. The cool thing about a rocket mass heater is that it stays warm long long after the fire is out. The whole thing is powered by a rocket stove, which is a j shaped burn chamber. Fuel goes in the short side of the J, the fire burned sideways and the bottom of it. And then the draw is created by a tall vertical heat riser. The gases then come out of that chimney go all around the inside of the barrel, a lot of the heat is given off into the room right off of the barrel. That's your radiant heat source for the room. The barrel acts as that radiant heat source. The gases then go through a valve in the barrel down below and through a series of tubes that are encased in mass such as aircrete or cob .The gases are able to shed the heat into the cob. And the cob stores it as a thermal battery. The gases make its rounds through the tubes and goes out through the exhaust pipe. The rocket mass heater shown here is made of a burn chamber, heat riser, bench for containing the tubes , the exhaust pipe and an insulation refractory material like aircrete which is a high temperature cement mix. The burn chamber is made from an old sheet metal pressure tank and a stainless steel water heater tank. The pressure tank insulated with aerated concrete sits inside the water heater tank. The combustion or gasification chamber is connected to the heat riser chimney through a three inch pipe insulated inside a six inch pipe. This pipe is also insulated with a refractory mix. The vortex chamber is connected to this pipe. The vortex chamber is made from a saw blade and a left over piece of pressure tank material . It is insulated with the refractory material . Six glue stick 3/8th inch air holes are drilled at right angles around this refractory material that creates a vortex extra air suction effect .So as that heat comes up and creates a negative pressure up the riser, it swirls around the vortex chamber and enhances the burn. The initial combustion creates enough heat to release way more gases than it has oxygen to burn. By introducing a vortex air intake system, the burn output is amplified. For making the insulated heat riser, we are going to use an aerated concrete refractory material called aircrete . We make the mould for the four inch heater riser using a metal mesh fabric, sarnafil roofing material and a thin gauge wire. Then it is filled it clay sand up to to the top . We take this mould and put it inside the six inch stove pipe and pour aircete through the sides all the way up to the top and let them sit to cure. We pull the sand out of the center of the heat riser. And then eject the liner that went against the inner fabric webbing that acted as a mold for the aircrete. The Aircrete heat riser is installed on top of the vortex chamber .The heat riser is double insulated with a old water tank and an old 55 gal oil barrel. Also the water tank is insulated from the 55 gal barrel using some pea gravel .The insulated water tank has an outlet pipe at the bottom for extension into the mass bench . The exhaust pipe coming out the insulated heat riser has a two foot drop to a directional valve connecting two pipes ,one pipe acts as a flue chimney that goes out into the outdoors through the window, the other goes into the mass bench. The valve allows us to redirect the air to pass to the bench once the heat riser is all warm. The eight foot long wooden mass bench houses the six inch stove pipes coming out the exhaust of the heat riser. It has a mylar reflective insulation sheet on the floor. This helps prevent the heat escape through the floor .The mass bench is then insulated with pea gravel which absorbs the heat and holds it and slowly radiate out over a period of time. The pipe coming out of the bench goes out of the window through the valve. The flue chimney pipe that goes out through the window to the outdoors is made of double walled stove pipe. A five inch pipe is inserted inside a seven inch pipe. The space between them is insulated with a aerated concrete refractory material .All this insulated exhaust pipe is doing is taking and adding an element of acceleration up the chimney to negate the net negative you get from dropping two feet down into the bench from the heat riser. https://www.youtube.com/watch?v=o1ZKm7QZ-dY