Cool DIY Video: How to build a Window Attached Solar heater that gives “FREE HEAT” all winter and acts as Solar Oven as Well !



    RECENT POSTS YOU MIGHT LIKE
    • DIY Video: How to build a Copper Coil Ammo Box Off Grid Water Heater.Also works as a Space Heater
      This Video shows the build of an Ammo Box heater in combination with a copper coil.It circulates heated water from a near by campfire,wood stove or solar heater into itself.This setup serves 2 main functions.It can be used as an off grid water heater ,also can be used as a offgrid space heater.This is used here to heat a camper.The ammo box will radiate the heat inside the camper making it warm even its freezing cold outside.This setup is great way to bring the heat of the fire inside while keeping the fire itself safely outside.

      Watch the Off Grid Copper Coil Ammo Box Water Heater/Space Heater Build Video

    • DIY Video: Generate power from slow moving streams and rivers that have no speed or head by building a Hydrofoil Hydroelectric Generator
      This NEW Hydroelectric generator design uses a Hydrofoil and a simple flywheel to create hydroelectric power from otherwise unusable water flows. This design will produce power from slow moving streams and rivers that have no speed or head, it also allows us to produce power without making a dam. This will open up a whole new product line for hydrofoil powered slow water flow based hydroelectric generators.

      Watch the DIY Hydrofoil Hydroelectric Generator  Build Video

    • How to Install a Complete Micro Hydro Alternative Free Power Generation System for your Home.
      This project goes over the details on how you can setup and install a 300W Off the grid Micro Hydro System for your home . The water source mentioned in this project have a flow rate of 15 - 30 gallons a minute and the drop between the source and the house is about 150 feet. The first step is to make an intake angled screen box for the system that helps in channeling the water from the source. The aluminum screen on the top blocks leaves, sticks and other debris to pass through into the box . The box is made of a 24 inch 2X10 ,2X4 and an 2X8 angled piece treated lumber. We add 3 one and quarter inch attachment points on the lower side of the box for the hdpe poly pipes. The box is secured using exterior screws on the outside and inner tubes on the seam to prevent leaks. The box is installed on the creek with help of couple of three and half inch concrete anchors and two boards are screwed on both the sides for support. The outlet poly pipes from the intake screen box goes to 55 gallon plastic barrel which acts as a silt catchment and also an air free source. The 3 outlet pipes are connected to the top of the barrel with the help of uniseal rubber gaskets. A 2 inch pipe is installed midway on the tank for the penstock. We also install an overflow pipe near the top of the tank to take the extra water out and a three inch cleanout pipe at the bottom . The cleanout pipe can be unscrewed to remove the silt and debris out. To take the water from the intake to the turbine, the penstock used here is a 100PSI 1100ft 2 inch poly pipe. A threaded adapter is glued to the outlet coming out of the barrel. It is then connected to a two inch full port shutoff ball valve followed by an another threaded adapter and a pipe. The penstock poly pipe is attached to this pipe using barb fittings with hose clamps. Next step is to install the pressure gauge and the surge tank to our penstock pipe. Water will come down through the poly pipe into another PVC pipe fitted with a pressure gauge, surge tank, two inch closing ball valve and a union to remove the turbine from the pipe. The surge tank is made of a standpipe that will prevent any water hammer affecting the pipes. The two inch poly pipe coming out from the barrel is connected to the two inch PVC surge tank and pressure gauge using regular . If the main shut off valve is suddenly closed, this tank will allow some of the surge to be absorbed. Next step is to build a housing for the micro hydro turbine. It is going to have a lid that opens up and a drain field pipe that goes out back to the creek. The housing for the turbine is made of three quarter inch plywood that is 2 X 2 foot wide and one foot tall. The turbine sits inside the hosing in the middle with the help of some 2x 4 scrap wood and a bucket lid piece. Then a 3 inch exit pipe comes out of here down through the middle of the housing .This drain pipe keeps the water from piling up under the turbine. The Micro Hydro Turgo Turbine is custom built based on the head pressure and the flow rate of the water source. It has three ball valves and four quarter inch jet nozzles coming out of them. The ball valves can be separately turned off when there is not enough water .The turbine is wired up to be three phase. The water coming out of the penstock hits jet nozzles that turns the Pelton wheel which is connected to 3 phase AC motor. To connect the turbine to our house, we use a 10/3 underground feeder wire. The wire is enclosed in a one inch conduit pipe. The proper way to install wire into a conduit is to get your conduit all glued together. And then you have a vacuum that pulls a string through. You tie your string to the wire and then pull the wire through the conduit. The wire goes into the house through a PVC conduit body. We install a junction box on the housing of the turbine to join the 3 phase turbine output wires to the 10/3 UG feeder wires coming from the house. Inside the house, we connect a rectifier to the three legs of the three phase coming from the turbine .This converts the AC generated into DC power. To generate useable power from this micro hydro system we need to install certain electrical devices in our houses. These include the MPPT Charge Controller, Grid Tie limiter Inverter, breaker box, disconnect switches and the batteries. These components are mounted on a 2 X 2 foot ,three inch plywood board. In case there is some excess heat for one of these electronics at some point, we cover the plywood board with a piece of sheet metal so that it will act as a heat sink. From the rectifier, the connection goes into a 25amp breaker box .The red wire goes into the breaker box and then further connects to positive of the charge controller. The negative white wire is directly connected to the negative of the charge controller. The five 12V AGM batteries are connected in series using four gauge cables. The positives from the batteries are connected to the charge controller and the inverter via DC switches .These switches allows us to isolate and disconnect the components individually. The negatives from the batteries are connected to the negatives of both charge controller and inverter respectively. The inverter is further connected to receptacle from where it goes straight to the main supply. https://www.youtube.com/playlist?list=PLTrfbWw_mKRL5Ae_x1Q4-1pOs0NJGwnzi