Cool DIY Video : How to build an Underground Survival Shelter from an Old Shipping Container -Step by step Video Instructions

    This 3 part video series shows you how to safely build an Underground Survival Shelter from a 20ft shipping container.This is a great step-by-step example of how a 20 foot container can be buried, reinforced, and have utilities added to make a shelter that has everything you’d need in an emergency, and double as a cellar for food storage.Whether you’d like a cellar, prepper space, a ‘man cave’ or just an addition onto your home, shipping containers are quite a good start for above or below the ground shelters or rooms.

    Watch the DIY Underground Shipping Container Survival Bunker build Videos

    • How to build a Large 2000W Portable Solar Power Generator at Home from scratch.
      The idea of a completely silent power generator that can still run large power loads, and never need gasoline is a really cool concept. This project goes over the build of a large 2000W Portable Solar Generator that can power appliances ranging from a table saw to charging your phone effortlessly. We need a large box to hold our basic components. Here we use a pelican 1620 protector case that is durable, dustproof and waterproof .This is going to be the case that we package everything into. It's got wheels on the bottom so you can roll it around ,also has heavy handles on either sides. The battery is a AGM glass mat ,coil would style, 12V optima deep cycle battery. A deep cycle battery just allows you to get a little bit deeper into the discharge before you are starting to shorten the life of that battery. This battery also has the ability to be mounted in any orientation . So it is safe whether the battery is on its side on its back or even upside down as long as we have it mounted securely so that nothing shorts against our terminals. The next major components for our build is the 2000W inverter from Krieger. This one has some large terminals on the back for our wiring. Also has a active fan here for ventilation. Also comes with a remote control switch. The 100W Solar Panel is from Renogy. It has the bus on the back for connecting in to your solar charger .It also comes with a 30A Solar Charge controller. This can run up to four of the 100 watt panels in a 12 volt system. The back of the solar panel comes pre wired with MC4 connectors, as well as a couple of MC4 pigtails. We use high quality 16 gauge speaker wire to extend the connection. These wires are highly flexible for portable use. To connect it to the MC4 pigtails we need to go ahead and strip the insulation off and use butt splice connectors to crimp them to the MC4 pigtails. In case you cant to charge the system with standard AC power ,we use a 1.5A Battery maintainer / Float or Trickle charger. This will be good for just keeping it topped off when it is in storage. Or if you just want to charge up your batteries and you really don't have a place to be setting the panels out. Next step is mounting components on the outside of the case . Before mounting any component, factor in how the internal components are going to placed inside the case. On one side of the case ,we are going to mount a small LED work lamp with toggle switch, a 12V gauge pod with 5V USB output, digital voltmeter,12V cigarette socket ,an AC input plug for using with the trickle charger, a 6pin solar panel trailer connector. These components are secured in place using a RTV silicone sealant. One the other side of the case , we are going to mount the inverter remote control switch, 350A high current plug which is used for jumper cables or to add high current loads, a GFCI AC outlet with a weatherproof cover. The GFCI outlet is connected to the inverter inside the case. We want to put the battery as close to the wheels as possible, because that will help keep the heaviest part down low when moving the case around either on the wheels or by carrying it. We place it snug into a corner of the case using battery mount and couple of pieces of 2X4. The inverter is placed inside the case in such a way that there is enough space for air ventilation and for tucking some of the wires underneath. The inverters are secured in place using mounting tabs and 10x24 machine screws. The PWM solar charge controller is also mounted in the same way near the solar panel connector input. The trickle charger / battery maintainer is placed as low into the back of the case .This is not something that will get very warm so we don't need to worry about heat dissipation or anything like that . We plug the power cord from the trickle charger into the AC input cord. Next step is the wiring. We start by connecting the power cables from the inverter to the battery. The positive and negative from the inverter is connected to the positive and negative of the battery respectively. To distribute power in our generator ,we use a six circuit fuse panel for the positives and a busbar for the grounds. We use two inexpensive battery cables to run the power to our distribution blocks as well as running the power to our high current quick connector. The positive red connection from the quick connector goes to the fuse panel and the black negative connector to the ground busbar. Both connections are further extended to connect to the positives and negatives of the battery respectively. The LED lights are connected to the 3 way connector switches. The switches are further connected to the power distribution fuse block. Similarly a single switch is connected to the USB outlet, voltmeter and the cigarette lighter ports in parallel. The positive from the switch is connected through a daisy chain mechanism to the three positives of the ports ,the negatives are similarly connected to our distribution block. At this point, we now have a power wire and a ground wire for every single one of our accessories connections . We bundle these wires and keep it neat and tidy using zip ties. Separate the positive wires from the negative wires, we are going to be rounding the negative wires to our ground busbar. After we have all of the ground wires connected, we can move on to the power wires on our distribution block. Each one of the blade connectors represents one fuse circuit. We connect the positive red wires from charge controller, battery trickle charger, usb ports,voltmeter,12V outlet to the fuse circuit. We are using a 30A fuse for the charge controller,12V socket, 20A for the LED work lights, 5A for the trickle charger.
    • DIY Video : How to build a Powerful Mini Box fan for or off-grid use, camping, emergencies or everyday use
      This Video shows the build of a Homemade 12VDC Mini Box Fan! w/motor speed control!Powered with a 12v battery or 12v solar panel! Made Sturdy and is SUPER POWERFUL! pushes more air than a fan twice its size.Ithas a whopping 1500 CFM air-flow volume with wind speeds measuring in at over 20 MPH! (32 kph) and with the motor control switch you can set it to run at any of 100 different speeds! .Great for off-grid use, camping, emergencies or everyday use. tip: run it from a cars' 12v cigarette lighter plug.

      Watch the DIY Homemade 12VDC Mini Box Fan Build Video

    • How to build a Cheap Waste oil Barrel Heater for your Garage .Generate Free Heat from Used Oil
      This project goes over the build of a homemade waste oil garage heater made out of an old standard 55 gallon drum and a propane tank. This setup also doubles as a cooker. The first step is to make the Waste Oil Burner Unit. This is made out of a four inch tin can and a candy tin. Place the tin can in the center of the candy tin and mark around them. Cut a hole out of it with a chisel. Drill around 15 small holes around the tin can. The tin can acts like a chimney brining fresh air for the combustion. The open end of the tin is placed into the hole at the center of the candy tin. This burner uses a little over two liters of used waste oil per hour and makes lots of heat from that amount of oil. Make sure that the propane tank is empty. Fill it with water and let it sit for a day before we begin to disassemble them. Once the tank is safe to work with, we begin by cutting two sections on the them and divide it into two chambers .The top one is seven inches high and the bottom one is three inches. We also cut two openings at the top of the tank for exhaust fumes. We make a disc separator out a 4mm steel plate with a hole in the middle. This disc goes in between the upper and the lower chamber. We place the tin can burner unit inside the upper chamber . The lower chamber is for the air intake. Doors are made with the leftover cut pieces of the tank . The door for the upper chamber has a screen welded onto them for viewing purposes. The air for the combustion comes through the lower chamber ,passes through the disc separator hole and goes into the burner unit. To radiate the heat , we place a 55 gallon drum over the propane tank burner unit . To make this unit , we take the drum and place it sides and cut out a portion . A steel plate is placed in the middle . This can act as a cook top . One the other side of the drum ,we make a hole so that it sits in tightly on the propane burner tank. The two upright sides of the barrel is welded with a six inch steel pipe for heat distribution. This pipe acts as suction for the flue pipe . The flue pipe is welded onto this pipe in the middle . So the exhaust gas from the burner comes up and heats the plate over it ,travels up through the barrel into the pipe and moves out through the flue. To control the waste oil coming into the burn chamber of the barrel stove , we use a drip feed system. The oil stored in a bucket is connected to a half inch pipe with a ball valve. The pipe goes into a standard half inch gate valve and further connects to a pipe in pipe system. A half inch inch copper pipe is placed inside a one inch mild steel pipe . The pipe coming from the gate valve is connected to the copper pipe which is inside the mild steel pipe through an elbow. These two pipes goes straight into our burner unit inside the propane tank. The oil gets drip fed into the candy tin of our burner. To get started ,we add some kerosene and light up a fire using the torch. We slowly open the valve to start the oil feed into the burn chamber.