Cool DIY Video : How to build an Underground Survival Shelter from an Old Shipping Container -Step by step Video Instructions

    This 3 part video series shows you how to safely build an Underground Survival Shelter from a 20ft shipping container.This is a great step-by-step example of how a 20 foot container can be buried, reinforced, and have utilities added to make a shelter that has everything you’d need in an emergency, and double as a cellar for food storage.Whether you’d like a cellar, prepper space, a ‘man cave’ or just an addition onto your home, shipping containers are quite a good start for above or below the ground shelters or rooms.

    Watch the DIY Underground Shipping Container Survival Bunker build Videos

    • How to build a Backyard Waste Oil Burner Powered Water Heater to produce Free Hot Water for your Home
      This projects goes over the build of waste oil powered free hot water heater for your home .This converts an old used domestic water heater to run on waste oil, engine oil or cooking oil. With as little as one liter of waste oil, this heater gives twice the heat output than a domestic electric powered water heater .As waste oil is free, this is more economical than running on gas or electric. The setup of this waste oil heater is very simple and easy. We have a waste oil burner that is placed under the domestic water heater. The burner is connected to a blower from a car. This blower is powered by a 12V battery charger . The burner is also connected to a drip feed waste oil pipe through a small pipe. The oil feed from a suspended tank, which gives it a gravity feed dribbles into the inlet pipe on the burner and it is simply blown into the burner by the force of the air from the blower. To control the oil flow ,we have a valve on the oil tank. The cold water comes into through the inlet hose at the bottom of the tank . From there burner just fires the heat up through the center of the heater as it would normally if it was gas fired. The hot water comes out from a outlet hose at the top of the tank. The waste oil burner is made out an old fire extinguisher bottle. The beauty of using extinguisher bottles is you don't have to worry about any flammable gases in them, and the metal seems to be quite durable. Make sure that the air and the fuel enter the bottle at a slight angle in order to create some swirling. This makes sure that the air and the fuel mix and will burn completely. And also that the bottle is kept hot so that the liquid oil will vaporize and the gas will burn. The inlet pipe for the waste oil and the blower is positioned at 25 to 35% of the way up to the bottle. The inlet pipe has a small bend in it so as to promote swirling within the bottle. This is important in keeping the bottle hot and self sustaining. The burner has a clean burn with almost no smoke. The output of the oil burner can be controlled by the amount of waste oil being dripped into the burner and by the amount of air blown into it. This oil gas burner is more powerful than a gas burner and the heat produced can overpower the heat sink threshold of the water heater . A vent line is installed on the system so that any build up pressure can be released. Apart from heating hot water , this set up can be used for space heating , pool heating or garage heating.
    • How to build an Offgrid Wood Gasifier that can produce alternative free fuel
      This project goes over the build of a cross flow wood gasifier that powers a generator or a car or any kind of internal combustion engine using nothing more than wood scraps, paper, coal or any other organic materials. This unit was built in nothing more than an angle grinder, and a hand drill and parts that you can find lying around. These devices are taking advantage of a process called gasification, in which you can take any kind of organic biomass, really anything natural that burns and by heating it up, you are able to break it down through a process called pyrolysis to its basic elements. This creates a gas called syngas or wood gas. Here we are burning biomass in an oxygen deprived environment. And that heat which is sustained through just enough oxygen to not spread to ignite the gases produced by the heat interacting with the surrounding material is the process that we are using to create wood gas. The gases coming out contains things like water vapor from moisture content in the wood, also creates tar and creosote .So we need to filter out the gas. And the main concern of getting that gas to be clean enough to run an engine is by cooling it down. We connect the unfiltered gas coming from the pressure pot into a radiator to cool it down and then further connected to a bucket filled with saw dust to filter . The reactor unit is made of an old 5 gallon painting pressure pot . The first step is to burn it out removing old residue and paint. Also burn out the inside container as well. Make sure everything on the lid of the pressure pot is removed and sealed off with a plug or bolt. Remove the rubber gasket on the backside of the lid. The holes on surface of the lid are covered with three eighth inch bolts. At the bottom of the pot , we attach two pipes for the the air intake and the syn gas suction output. These pipes are held tightly to the pot with the help of one and quarter inch pipe flanges. The air comes up from the bottom, the gasification happens in the middle of this reactor and the ash gets sifted to the bottom through a passive shaker grate. The output pipe is capped at the top to prevent the residue ash going out and small holes are drilled along the pipe to allow the wood gas to pass through. Next step is to build the grate insert where the fuel will actually sit on and burn on. The grate will sit about two and a half inches off the bottom of the pot. The grate is made from the other stainless steel container that came with the pressure spray painting pot. Grid of holes are drilled along the surface of the grate using a quarter inch drill bit. The grate is finally is inserted into the reactor pot chamber . The gasket on the back of the lid of the pot is removed and replaced with fiberglass rope that can withstand temperature up to 2000 degree Fahrenheit. The rope is secured in place using a gasketing cement and stove sealer. The lid is clamped in place until the gasket cement is dry. The next step is to build the cooling and the filtering system. To get all the tar and steam to condense back into their liquid form , we use a old oil heater radiator that act as a condensate catcher . The gas coming out of the reactor is connected to the radiator which gets most of the heat out of them. We build the filtration system using a 5 gallon metal bucket to get the gas as clean as possible. The output pipe is attached to the bottom of the bucket using a flange. The bucket is filled with a filter medium such as wood shavings or sawdust that will trap any sort of particulates and get more tar out of the gas. An old car blower from a toyota is attached to the top of this bucket to get that gas up to the point where it can burn. The blower motor is supported with a old 10 tin can that is then secured at the center of top of the bucket .Another soup can is soldered to the 10 can on the side to attach the output hose pipe. We don't want there to be enough oxygen to actually just burn all the material in there before we can extract the gases . So we are limiting this by using a one way gate valve . The one way valve is important to prevent flashbacks if too much oxygen is there inside the reactor . We load the reactor with wood sticks and put some starter down in there, which is just some cloth, some paper and a sprinkle some wood pellets on top just to give us something small to start off with. We pack the reactor leaving a spot in the center . The fans is turned on and we start the ignition process.
    • How to make a Survival Rope Making Machine at home from easily available materials
      This project goes over the build of a Homemade rope making machine using a simple cordless power drill and some inexpensive materials that are sourced from the local hardware store. Here are the materials needed for this project: Three quarter inch by five inch eye bolts with hex nuts Fender Washers Cut Washers Hex Nuts Plastic Castor Wheels two by two and one by six by six piece of lumber Old bicycle tire tubes Take the board and cut it to length of seven and a half inches and took the first piece and doubled it over the second one and cut them together so that they are exactly the same length. Then I took a piece of two by two and cut it eight and a half inches long. Take large fender washers and position them on the board forming a triangle, you want to do it in such a way so when you add your two by two to the top as well as the bottom, it has similar spacing at the top and the bottom. Put the two boards together, mark the centers and drill the holes. Next step is to build the metal spinning hooks. These spinning hooks are going to be made out of eyebolts which is used as a hook to put the strings on. We take 3 plastic castor wheels and use them as a pulley , connect them together with a small piece of bicycle tire tube so that when one is spun ,all three of them would spin together. We take the 3 eyebolts and push it through the hole and secure them tight with a small cut washer and hex nut. It is locked in place but should spin freely. Put with wheels through the bolts and secure them using fender washers, cut washers and nuts. Take an old used tire tube piece and line it up between the two washers and cut up a piece that is roughly about the same distance as that gap. We loop the tube over the pulley all at once.The Second board is pushed through the bolts over the wheel pulleys.Make sure everything is lined up symmetrically. When we turn one bolt, the belt drives the other two pulleys and they all spin together. As we are running the hook spinner, we are going to need something to hold it at the other end, To make the other end of the mechanism that holds the strings in place, we take six inch piece of common board and eight and a half inches of our two by twos on the bottom to secure it as a base and them we clamp it over a table. The idea is that as each hook begins to spin, the two cords attached to it will intertwine with each other. And then eventually all three of those cords will mesh together to make a nice three stranded rope. As the strands are twisted, it creates tension on the backboard. To relieve the tension, we drill a hole through the backboard and tie the rope to another counterweight rope through a swivel hook that pulls the tension and allows it to rise as the cord is pulled. We also make a rope makers top that will help guide those strands into the beautiful three strand cord. We add two ropes between the spinner mechanism as guidelines and connect it to the back board to accommodate the rope makers top. The idea is that as the tension builds it will glide forward and guide the individual strands into place to form a three stranded rope. We sandpaper the holes on the rope makers top to make it smoother so that the lines won't snag up when they start twisting. We put a wooden knob on the back to reduce the friction so that the rope makers top can slide smoothly. Loop the cords through each of the three hooks on our rope maker machine .Form a slipknot and connect it to the swivel hook. We have our rope machine build complete . To tie and cut of the rope, take a small piece of electrical tape and wrap it around the end where you want to cut it off. Cut The Rope at the back just where the electrical tape ends .