How to build a DIY Passive Solar Thermal Water Heater. Simple and Efficient!!

    This project goes into the build of a passive solar thermal water heater using pex pipes and 4 X 8 plywood piece. The pex pipes are sturdy and tough , doesn’t easily leak. This passive solar heater can reach upto 120 – 150 F on a typical sunny day. Instead of pex pipes, you can use cheap irrigation pipe for this project. The pex pipes are more stronger and durable . The heater can be used for heating your domestic water, space or room heating or just heating a swimming pool.

    The box that contains the pipes are made of 4 X 4 plywood . Four pieces of 2 X 4 pressure treated lumber are joined along the sides using screws to make the frame. We staple in some bubble insulation along the dimensions of the box . Since the insulation material is silver, it will reflect heat. To avoid this ,we coat it with a flat black paint to attract the solar heat.

    Two holes are drilled on the sides of the frame for the inlet end of the pipe where the cold water comes in and outlet end where the hot water comes out. The inside and the outside of the heater is painted flat back using rust-oleum high heat paint to absorb maximum heat from the sun.

    The first layer of half inch pex tubes or irrigation pipes are secured inside the solar heater box using half inch pex talon clamps. The clamps are installed on four sides of the box securing each loop of the pipe. The second or upper layer of pipes are secured in using zip ties. The total length of the pipe is 200ft.

    The pipe comes in through the inlet hole and goes to the outside on the first layer , all the way around and work itself inside .It then goes through the top layer and all the way to the outside and then exit through the outlet hole.

    The bottom layer pipes aren’t going to be exposed to the sun as much but they still will be warmed up because the whole box is covered with lexan polycarbonate sheet. The top layer with the pipe that goes outside through the outlet hole will have the highest thermal BTU.

    A very inexpensive reed thermometer with a 4 inch stem is installed on the side of the heater using a half inch to three eighths bushing reducer .

    A 4 X 8 Makrolon Polycarbonate Sheet is placed on top of the heater box and secured down in place using a No 8 One and one fourth sheet metal screws ,finishing washers and rubber grommets. Silicon adhesives are used to seal the gap formed between the sheet and the box frame.

    The Solar thermal heater is placed at an angle of 20 degrees. This is done with the help of leg supports with dimensions 16 and 8 inches 2 X 4 pieces at both the sides. A 50 watt Renogy Solar Panel is also installed adjacent to the heater. This Solar Panel is for powering the bilge water pump.

    A 500GPH 12V bilge pump is used to pump the cold water through the pipes into the heater . In order to control the flow of water through the pump , it is connected to an speed control electric circuit box which has a relay, a buck boost converter,a motor pump speed controller, potentiometer and a switch. The pump is powered by a 50W Solar Panel .The negative connection from the panel is connected to the relay, the positive goes to the switch.

    The relay determines the voltage for the buck boost converter .It activates on a certain voltage we set and then powers the buck boost converter. The buck boost converter will keep a constant voltage no matter what the voltage the solar panel is putting out. It is then connected to a 15 amp motor pump speed controller and a potentiometer which is used to control the voltage of the bilge pump motor. The 12V 500GPH bilge pump is connected to the motor pump speed controller.

    In order to test the unit, we place the heater near a pool to heat it. The bilge pump is submerged into the pool which is then connected to the heater with help of a PVC hose. The output pvc hose is returned with heated water back to the pool. The water reaches upto 140 F based on our test.



    RECENT POSTS YOU MIGHT LIKE
    • How to build a Homemade Wooden Bandsaw Mill from Scratch.Step by step build Instructions
      This project goes over the build of a simple Homemade Bandsaw mill that can that turn hard maple into smaller lumber . The first step is to make the wheels of the mill. Here we use a three quarter MDF board to make this. The wheel size is 16 inch. We use a beam compass to cut circles and cut two wheels out of them. We make a seven and half pulley for the wheel using a three quarter inch plywood and drill a five eighth inch hole into the middle where the shaft goes. We take some hot melt glue and glue the stock collar onto the pulley and tighten it with a set screw so as to stop it from spinning. Before joining the wheel and pulley together, we make another small disc to go in between to act as a spacer .We glue the pulley to this spacer and from spacer to the wheel. Two wheel bearing blocks are bolted to the wheel on both sides using 4 three eighth inch threaded rods. Make sure that the threaded rods are tight inside the hole in the wheel, but the bearing blocks itself can move around. One way to keep these bearing blocks in place so that they dont move side to side is to apply some construction adhesive to the corners. Next step is building the frame for the saw from salvaged 2 X 4 boards. Make sure that the 2X 4's are straight. Take the bench hand plane and smoothen the edges so that the boards sit flat. It takes several shallow passes flipping the woods each time to get rid of all the twists and warps. Two frames pieces hold the wheel in ,the stationary drive wheel is placed eight and half inches from the end. Two five eighth inch holes are drilled on both the frames so that axles fits in there neatly. On the other side, one holes are drilled that gives the room to adjust the wheel. We also make an adjustment collar out of plywood that is bolted into the frame and the shaft . The collar can be moved to adjust the wheel. We also place couple of pieces across the frame and secure them tight so that the supporting boards are locked in position. On the other side we install the front wheel or top wheel. This wheel needs to move back and forth to put tension on the blade. It also must have a tracking mechanism. For that we make a two small piece that locks into the shaft on the front wheel and slides back and fourth. A guide piece is drilled onto to this piece . A one inch hole is drilled into our slider piece and a three eighth inch threaded rod is secured in there with a nut and washer. These rods help put tension on the blade and also adjusts tracking. Before putting the blades on the wheels, we put silicone caulking on the wheels to smoothen it out .These have advantage over bicycle inner tubes as it doesn't drape down over. The legs are attached to the frame using gusset blocks. To put the motor onto the frame , we take a melamine board and screw them aside the stationary wheel using a cross board. This piece of melamine not only supports the motor, it also helps to brace up the top to keep that from rocking. Secure them tight so that it resists moving while the cutting is going on. Next we make blade guides near the bottom to make a guard for the blades just in case it snaps and flies off. The blade guides are made of small piece of steel angle that is glued to a ceramic piece. The way blade guides work is that they don't actually touch the blade when it is running. It is only when the blade tries to move up or down that it will constrain it and keep it on track and prevent it from twisting. A thrust bearing made of regular size ball bearings is bolted onto an aluminum angle that is further attached to the blade guide. We make a dolly cart out of 2 X 4 boards and some castors to place the big maple logs and move it effortlessly through the blades . The castors are screwed in the ends using quarter inch holes. The castors are fixed in such a way that it moves only in one direction back and forth. https://www.youtube.com/watch?v=rhFEVf8zZkg&list=PLQl9KPrpiIH9Sk0wEiN9d0ANUOK-ntV-i
    • DIY Video : How to Turn old unused ceiling fans into a useful energy producer by building a Wind Turbine out of it
      A Beginner tutorial on how to make a wind turbine ceiling fan.So out of the box, we have the main part here, which has the motor in it.Keep up with all the blades if you can. You can use this for the furrow on the back the way it pushes around to keep the turbine from standing in a very aggressive wind it pushes it out of the way First part is just getting the motor outside of this casing. And you want to be careful because these wires are fragile, and you don't want to tear those loose by any means.So mainly, the tools that you'll need is just a screwdriver, maybe a flathead screwdriver and a hammer eventually. Take the top part of the ceiling fan off, this is the part that's next to the ceiling.Disconnect the wires don't cut them. There's a nut here with a washer that holds this plate.And we don't want this plate. So we need to take that off. However, we do want the washers here. Take this casing apart, and inside you'll see that copper coils that actually power the fan. The next step is finding the highest arm reading of these four wires that is coming out of this motor.Pull that higest ohm reading wires through the center pole to the other side. Insert a metal banding used for attaching the magnets around the stator. Put the magnets inside the fan housing to achieve a voltage reading.Add a cardboard spacer in there so that the magnets are aligned with the stator. The blades are made of 4 inch PVC.You can find templates online for the blades.Put the outline of the blades from the paper onto the PVC and then cut it out with a jigsaw. And then once you cut it out with a jigsaw, all you have to do is get a little Sander out, you can use a hand Sander to smooth the edges off. Connect the blades to the faceplate of the old ceiling fan. Next step is to take an inch galvanised pipe that forms the body of the turbine. A 40 inch piece will slide down into the conduit of the mounting system for your turbine.A 30 inch piece on the back,This is going to be angled up into the wind to keep the blades in the wind a little better. One Inch PVC is slid down the end of the 30 inch pipe and attach the tail piece on there which is made of fan blade The wires from the fan is passed through the pipe and just zip tie them down.Cut the PVC in half to a 45 degree elbow ,cut a line down through this PVC, we're gonna split it basically and drill some holes in it and attach the ceiling fan blade. Attach the fan to the galvanized pipe with the help of an extension that was previously saved during our dismantling of the ceiling fan.Use JB weld on the inside of that. And I put this bolt through this part and put a tightening screw on it, they're kind of digs into the metal. Connect the two leads from the fan to a bell wire, solder these two together, wrap it up with some electrical tape and kind of zip tie to the top so that it will stay in place.At the base end of the wire,connect it with a diode bridge rectifier which is further connected to our battery. Regarding connecting the rectifier,it doesnt matter how you solder them together,just as long as they are separate and not connecting and shorting out. But you want to put this at the base of the wire at the very end so that you can put this inside of your battery box and hook it up to your battery. https://www.youtube.com/watch?v=sr9ZMbF3Zqk&list=PL68TKRSLgXzQqZa5WzMNFwmYKS4b4KPcA
    • How to turn Dirty-water/Salt-water to a clean fresh drinking water by building a simple Water distillation system
      This project goes into the build a simple Survival water purifier that can turn salt water /sea water into fresh drinkable water .This purifier is portable, easy to make and is very inexpensive. It works by the principle of desalination .When sea water/ salt water is heated to its boiling point, the water turns into steam which leaves the salt behind. Condensing the steam back into water ,it is purified. The materials you need to build this desalination unit are a simple non insulated stainless steel bottle with a steel lid , copper tubing , stove or heating source, bottle for collecting the condensed water, soldering unit, right angle compression fiting. The condenser of this desalination unit is made from one quarter inch copper tubing. Remove the lid and the gasket from the bottle . A hole is drilled using a drill press at the top of the lid to accommodate the quarter inch copper tubing . Before soldering the copper tubing , clean the surface of both copper and the stainless steel lid with the help of a sandpaper. The copper tubing is pushed through the hole just enough to stick half an inch from both side. It is then soldered securely in place. Once this is completed , the silicon gasket is then re-installed in the lid and lid is screwed back on to the bottle. A right angle compression fitting is pressed into the lid at the copper tubing opening . The extension tube at the other end of the compression fitting is removed and replaced with a rubber gasket for better seal for the lock nut. The copper coil for the re-condensing the steam when the water is boiling is made by wrapping the copper tube up tightly against the stainless bottle . Eight or nine turns of the tubing is ideal. The ends of the coil are bend outwards so that when one end is pressed into the fitting on the bottle, the other side will be sticking straight out. The salt or sea water is added to the bottle and reattached to the lid which is hanging over a heat source such as a wood stove or camp fire. The other end of the coil is placed near a collection container to collect the distilled water. To produce more condensed water out of the copper tubing ,we need to cool it down. Otherwise the production of steam will outweigh the production of the condensed water. To cool the copper tubing , wet put a wet piece of cloth soaked in cold water and wrap it around the coil or dip the whole bottom half of the copper coil into a vessel filled with cold water. https://www.youtube.com/watch?v=PT6cjp_zThw