DIY Video : How to build a Thermal siphoning rocket stove for an off grid water system. Clean and efficient burn



    This Video shows the build of a Thermal siphoning rocket stove for an off grid water system. The advantage of the rocket stove is a clean and efficient burn. This system uses 5 metres of 20mm annealed copper pipe, and though I designed the rocket in a J configuration, it worked better as a batch box. There is a vortex generator at the base of the riser and basically I was able to heat 200 litres of cool water straight out of the tap to 67 degrees Celcius / 152.7 F in 1.5 hrs.

    Watch the DIY Thermal siphoning rocket stove build Video



    RECENT POSTS YOU MIGHT LIKE
    • How to Dig a Shallow Well from Start to Finish for offgrid homesteading
      This project goes over how you can dig your own shallow well using simple tools that you can get from your local garden store. The materials you need to dig and install a well are as follows. A customized Seymour AUA2 Post Auger to dig the hole. A Shovel is used to move the pea gravel and dirt out of the way. A Four inch casing PVC pipe that is going into the hole that is dug and this is going to hold the water until you need it. One and one fourth inch threaded adapter. This connects the bottom of the casing pipe to the foot valve. The foot valve is one and one quarter inch. This valve allows the water to come in and not go out. This helps to keep the pump primed. A water well pump pipe which is basically a one and one quarter inch PVC pipe. This will pull the water from the bottom of the well bringing it to your pump. The length of this pipe is going to be determined by how deep your well is. It should be at least a foot shorter than the depth of your well. You don't want this pipe sitting on the bottom because it would just be sitting in sediment and it will be clogging things up. A pitcher pump that has a one and one quarter inch threaded water inlet at the bottom. A closet flange. It makes mounting the pump to the top of your well four inch casing pipe very easy and it also helps keep things clean. Basically you would just set this inside you your four inch pipe, drill a hole out of the middle of a board, screw that to the top of this flange then mount your pump to the board that you have fastened to this. A one and one quarter inch threaded adapter. This will screw into the bottom of your pitcher pump and in turn, it will connect to the pipe bringing water to your pump from the bottom of the well. Teflon tape, PVC glue. Pea gravel - This will go down around the casing pipe of the well. The amount of pea gravel you need is determined by the depth of the well and water height. Quikcrete or aerated concrete to cap the top of the well. This prevents groundwater contamination and keeps stuff from finding a way to easily get into your well. To find the spot for the well, we use couple of coat hangers as dowsing roads. We take a drinking straw ,cut it in half and slide it over the coat hangers. This helps us in not using our hands or fingers influence while dowsing. Also it is easy to rotate the rods within the straws. The rods are kept parallel to the ground . If the rods cross each other , then mark the spot on the ground directly down the cross . This is the ideal spot for the well. The auger used for digging the hole for the well is modified from the default Seymour Post hole auger. We use a custom 5 foot 11 gauge one and half inch square tubing as the extension for the auger . The handle of the auger is a three foot three quarter inch pipe welded to a four inch 11 gauge square tubing. We start digging into the the spot that we have found earlier using the dowsing rods. Pay attention to the changes in the color of sand , because that can give you clues as whether you are getting closer to water. We extend the auger using the square bar tube once the auger handle is near the ground. Once you have hit wet clay, there is going to be suction around. We twist and pull at the same time to get the auger out of the hole in this situation. Next, we put the 20 foot PVC casing pipe into the hole . We cut slots using a reciprocating saw on the pipe one foot from the bottom of the well to the top of the water level to allow the water to flow into the well. Pea gravel is poured around the sides of the pipe all the way up to the slots . The remaining hole area around the pipe is packed with sand and clay. We seal the well by packing it around the sides with quickrete cement. This helps the water not to be able to run down into your well but around it. We lower the one and one quarter inch well pump pipe with the foot valve at the end into the PVC casing pipe. A four inch drain flange is secured on top of the casing pipe . A pitcher pump is then attached to top of the pipe. To prevent the pump from moving, it is bolted to the board where the flange is installed. To prime the well, we pour some water down through the pitcher pump. Pump out the dirty water until it is clean. https://www.youtube.com/watch?v=5rYPRMm8Arw
    • How to build a Simple Homemade Bandsaw Mill from Old Car Wheels
      This project goes over the build of a simple Bandsaw from old car wheels .Car wheels are big and heavy, but in many ways, they are ideal for bandsaws. They are available everywhere cheaply. They have a rubber tire for the blade to sit on, and they have excellent bearings. Take apart the brakes, the backplate , bearings and the stub axle out of the housing. Weld the stub axle onto an off cut of scaffolding. So we now have two wheels, spinning on the ends of two straight lengths of steel. We take some scrap angle iron pieces and make a rectangular frame for the mill. This form as the base of our mill. In order to make the sliding mechanism, we take a scrap pipe and try to fit it onto a square iron pipe so it can slide in and out smoothly. This will be used for all adjustments. This is welded onto the frame. A Steel plate is welded onto the sliding bars. This is for the engine to sit on. The engine will drive one of the car wheels We mount the 11 HP Petrol Engine to steel plate and the tire is connected directly to the engine shaft through a drive belt. The drive wheel is bolted on to the frame ,also added a lever for the engine mount which will act as a sort of clutch, tightening and slackening the belt when necessary. We add two more pipes on the bottom of the frame and slid them to the support platform of the second wheel made from the same square box iron and some short sections which is part of the blade guide. The second wheel has to be adjustable in a few different directions and has to be lined up with the first wheel so the blade stays on them both without running off the tires. To adjust the tension on the blade by moving the wheel away from the first one, we use a bottle screw. The blade guides are made from cheap bearings. They needs to be adjustable so that the saw can cope with logs of different sizes. The blade guides help keep the blade straight as it goes through the log and also stops the plate being pushed off wheels The band saw has to go up and down so that it can cut planks from a log. We make a simple frame to hold it. It has to fit inside vertical pieces of angle iron on the saw. The support frame is bolted onto to the saw by using a bracket which grip the uprights. Couple of barn door pulleys are bolted onto the top of the support frame and the mill frame. A trailer winch is bolted on to the middle of the support frame. Using a 3mm wire and winch-pulley system, we can move the wheel frame up and down. Two short pipes are added at the front and these hold up a guard which can be taken off when we need to get at the belt or the blade. If the blade snaps, the side guards should make sure that it heads down towards the ground and not up to the ceiling. The saw is stationary and the log is moved through it using dolly trailers or rails. https://www.youtube.com/playlist?list=PL3_dJayH6e6ibBd5sA6WgXO99zf2zBsUe
    • DIY Video : How to heat your garage the Inexpensive way by building an Outdoor Stove with Heat Exchanger
      This project goes over the build of an inexpensive garage heater using DIY outdoor barrel stove with a heat exchanger. This outdoor setup is safe because you dont want the stove inside the garage to catch fire if you are working with any flammable gas. We use a 30 gallon drum for the stove. The access doors and legs are purchased from the local store. The heater exchanger is made out of four inch steel pipe .We take couple of 4 foot pipe and weld them together using another small pipe. This pipe goes inside the firebox and connects to the chimney pipes. The pipe should be thick enough that it can withstand the heat of the fire without sagging or bending. This pipe heat exchanger adds positive pressure . Removable hatches are made on one side of the stoves to connect the 2 four inch aluminum flex chimney pipes from the outside barrel to the garage. Inside the garage we place a 4 inch exhaust fan blower that sucks the colder air from the floor and blows it through one of the flex chimney pipe into the stove. The blower is actually a hydroponics duct exhaust fan purchased from Ebay. The cold air gets pushed into the stove and moves through the heat exchanger steel pipe , gets heated and then moves out through the second chimney flex pipe and back into the garage. The hot air from the stove moves into the garage through the second pipe. In order to get more hot air, we also add a drip fed waste oil system to the outdoor stove . The oil gets dripped slowly from a tank into a frying pan on top of the stove .You can add cotton rags and let it drip into there and it just keeps burning like a wick. The combination of both wood and waste oil produce better fire . If the stove gets too hot, you can turn of the oil or use oil only to maintaining the temperature. You can put an insulated shack around the stove to minimize the heat loss. https://www.youtube.com/watch?v=fn4CerxpNug