DIY Video:How to build an awesome Roof Top Portable ABS Pipe Hot Water Heater/Shower . Great for Camping/ Outdoors

    This project goes into the build of a DIY solar powered pressurized roof top water heater and shower that is portable for outdoor survival and camping trips. This project is easy to make and requires only minimal tools and plumbing parts.

    The dimension of the pipe used for this build is six feet tall and four inch wide. This has a capacity of 15 liters. The materials you need to build this project are six feet long four inch ABS pipe, air compressor, two four inch PVC end caps, abs cement, rubber schrader valve, shutdown valve and retainer nut, radiator valve drain plug , forstner bit,two inch threaded end cap, high heat flat black paint, steel wool scrubber, methyl hydrate.

    The shutoff valve is installed as low as possible in the pipe to avoid the necessity of having to tilt the system. Mark the position for the valve keeping the retainer nut in place , we insert a forstner bit into the nut creating a center mark for the drill .Once the hole is drilled ,we thread the shut off valve into place and attach the retaining nut.

    For installing air compressor for pressurizing the tank ,we use an long schrader valve that is used for aluminum rim tyres. This valve uses threaded nuts to secure it in place .

    Next step is to install the water intake opening. For this we use a two inch PVC threaded adapter socket . We take the diameter of the fitting and then drill out the opening and glue the fitting in place using ABS solvent cement.

    A radiator valve drain plug is installed on the threaded end cap of the water intake PVC fitting .This valve helps to release extra pressure from the tank without opening the main drain shut off.

    In order to improve thermal absorption of solar energy, the surface of the ABS pipe is painted with flat black paint. The surface is polished with steel wool soaked in methyl hydrate and applied one coat of spray primer followed by two coats of high heat restoleum black paint.

    To mount the shower to roof of the car or truck , we use a canoe foam block . We extend the slots in the foam block to make them fit inside the cross rails . An arc is cut on the foam block equal to the outside diameter of the pipe and positioned it such that it left half an inch of foam between the mounting slot and the bottom of the arc. To attach the shower to the support pads, here we use one inch nylon tie down straps. With both these pads in place, the water heater is securely attached to the roof.

    An inexpensive 25 foot long coiled three eighths inch hose from the local garden center is used as the shower hose. This would be perfect as it is easily stored and can be taken apart after use. The air compressor is connected to the pipe with the help of a multifunction spray nozzle .

    Thee bursting point of six inch ABS pipe is well over 100 psi .So a 30 psi would provide safe and ample pressurized shower without any long term expansion fatigue to the pipe or glue connections .



    RECENT POSTS YOU MIGHT LIKE
    • How to build a Simple and Efficient Homemade Water Distiller for cheap .Great for everyday use or in emergency/off-grid situations.
      This project goes into the build of a homemade DIY Water distiller that can purify dirty and contaminated water and desalinate salt water into clean drinking water. The total cost of this build is about sixty dollars. For distilling water, you need three thing - water, a source of heat, and some sort of apparatus that will allow water to boil into steam and then recollect that steam , condensing it back into usable water. A water distiller basically needs to do two things, it needs to boil water to create steam, and it needs to capture that steam in a way that allows it to condense back into water. The materials you need to build this distiller are six quart stainless steel pressure cooker, 20 foot three eighth inch copper tubing, two gallon bucket, jb weld, zip ties, flat bar, five sixteenth inch silicon tubing, mason jar. The first step is to boil the contaminated water in a tea kettle or a pressure cooker. Here we use a six quart stainless steel pressure cooker. Since the boiling water must be directed to the condenser, something with a sealed lid of some sort is needed. The existing pressure valve of the cooker is removed and replaced with a barbed fitting .A small rubber O ring gasket is used to tighten the new fitting. Next step is to make the condenser. The purpose of a condenser is to give steam the opportunity to cool back down enough so that it turns back into liquid water. The condenser is built using a 20 foot three eighth inch copper tubing. This is reformed into a tighter and taller coil such it will fit into a two gallon bucket. Because it needs some sort of support to avoid having the coil collapse under its own weight, a flat bar bent into a U shape is placed under the coil. A small cross piece is attached to it at the bottom using JB weld. The coil is attached to the punched bar with some zip ties. A hole is drilled near the bottom of the bucket to allow the copper tube to drain out the condensed water . The coil is placed inside the bucket carefully and the tail end of the coil is pushed into the drain hole . The condenser is connected to the pressure cooker with a 5/16th inch silicon tubing. A similar silicon tubing connects the bottom of the condenser to the clean water receptacle like a mason jar. When distilling water , cooling the steam back down is very important. The coil itself will cool some of that down. But that alone isn't enough at this scale. It will end up losing a lot of steam through the bottom of the condenser because not all of it has been able to cool and condense by the time it reaches the bottom. An efficient way is to add a cooling element to the condenser. Filling the bucket with ice water will increase the efficiency and water output by a lot because it will cool the copper tubing much more than air alone. Doing so had an immediate effect and all of the escaping steam condensed instantly to liquid water. By periodically adding cold water through the distillation process, it practically eliminated all of the steam waste coming out of the condenser. The gap around the copper tube where the hole is drilled is not sealed. This is because of two reasons. The first being able to easily remove the condenser from the bucket for cleaning and maintenance. The second reason being it acts as a drain. The boiling steam causes the copper tubing to get very hot. Because of this, it heats up the cool water very quickly and this drain makes it convenient in that the water will drain out before it gets to that point. In a survival situation , set the condenser over a larger bucket to collect and reuse the cooling water as it drained out and not simply let it go to waste. https://www.youtube.com/watch?v=PrfDskR2I5g
    • How to build an DIY 12 V Portable Water Pump Box with filtration system for Outdoor Survival / RV
      This project goes into the build of an offgrid portable water pump and filtration system that can turn any water from your creek,lake,river into safe and clean drinking water . This 12V portable system can be powered by solar or from your car directly and is ideal for camping , RV or outdoor survival enthusiasts. This system enables them to pump water from a fresh water source, filter and then store or use in case of emergency survival situation. The materials you need to build this portable filtration system are as follows. A tactix storage box to lodge the water pump,inlet and outlet hoses, an inline water filter or twin carbon 0.5micron filter, pex pipe, garden hose pipes, 12mill barb strainer,rocker switch ,12V Shurflo water pump with the flow rate of 11 litres per minute, 50 amp Anderson plug and 10m heavy duty wire ,basic tools such as wire cutters, long nose pliers, solder. The first step is completing the wiring for the water pump inside the tactix tool box. The rocker switch , the Anderson plug and a 7.5 Amp inline fuse are wired. The 12V rocker toggle switch is mounted at the center of the box lid. The power input plug or the Anderson plug is mounted to the left of the switch. This input plug connects to the car battery or a solar battery. The positive red wires from the switch is connected to the Anderson plug through an inline fuse .The negative black wire from the plug goes straight to the switch. The remaining wires from the switch is then connected to the water pump which will be installed later. The wires are covered with corrugated split tubing to ensure that it is protected and safe. The filter strainer is installed on the inlet side of the pump using an elbow, thread tapes. The strainer will filter out any unwanted debris before it goes to the pump. Couple of holes are drilled into to the side of the box where the inlet and the outlet hoses will connect the water pump. The male fitting are attached to the holes before the pump is installed. The pump is placed inside the box and mounted securely in such a way that the elbows are facing towards the two holes for the exterior hoses that was just made at the side of the box. Once the pump is mounted ,we connect the red and black wires coming from the switch to the positive and negative connections of the pump. The wires are once again covered with corrugated split tubing for safety. To connect the pump with the hose outlets , we measure the distance between the outlets and the pump and connect two pex pipes . Heat was applied to the pipe for bending and moulding them to connect the outlets. The 10 metre 50 Amp Anderson plug extension heavy duty cable wire is connected to the power source .Here the power draw is from a car battery. The other end is connected the input anderson plug on the top side of the box. The inlet hose with the strainer attached is placed sitting midway into the water source .The other end of the hose is connected to the intake pipe coming from the pump inside the box. The The other hose is connected to the outlet pipe coming from the water pump inside the box. At the end of the hose , we connect an inline water filter or a twin carbon filter . The carbon filter ensures that there is no sediments or debris inside the water and also helps to eliminate bacteria and other contaminants. https://www.youtube.com/watch?v=bLiTn8YacWo
    • How to build a simple and effective Multi Purpose Waste oil Aluminum Scrapping Foundry / Forge out of Scrap Metal
      This project goes over the build of a convertible waste oil powered aluminum foundry / forge made out of recycled materials. Waste oil burning does get more than hot enough to melt down aluminum, which has a melting point of about 660.3 degree celsius. The materials you need for this project are old 10 gallon propane tank for the foundry, air compressor tank for the waste oil burner, blower from a car , three eighth inch hose and a brake line for feeding waste oil from a bucket, 12V marine battery for powering the blower. We take a car heater blower and house them inside an old tin can for the air intake. This is soldered to soup can and one and quarter inch schedule 80 pipe .This feeds air into the burner vessel. The fuel source which is the waste oil is drip fed from a five gallon jug with a brass gate valve. It is connected to the blower pipe through a three eighth inch hose and a metal brake line. The waste oil burner is from an old air compressor tank .It has a two inch cap on the top where we start the ignition and light the system. The pipe from the blower goes half an inch into the burner at an angle. This generates a cyclone vortex effect . We want to make sure that the oil and air are very well mixed together. In order to sustain combustion on something that's so difficult to ignite like waste oil, we have to have a source of heat so it can actually atomize, turn into a vapor where it will burn very easily and very effectively. The outlet from the burner is connected to the foundry propane tank through a three inch piece of axle welded with a rotating coupling piece. This can be rotated independently so that the foundry can be rotated to a forge mode with the help of a lever. We mark and cut the top of the propane tank that essentially forms the body of our foundry. Next, we are going to need to put a lining on the inside , probably about two and a quarter inches thick. This acts as an insulator. Here we use a 50% mix of plaster of paris and play sand. The propane tank is filled with the mix and the air compressor is submerged in the center to form a mould. We let the tank sit for 24 hours to cure before we remove the air compressor out of it. Next step is to create the hole into the side of tank that will be the outlet of our waste oil burner. The hole is cut at a height so that the the aluminum wont run down and back flow into the oil burner tank. We place a three inch axle through the hole that is welded to rotating coupling . This coupling attaches to the outlet of the oil burner. One the other side of the propane tank ,we add a small lever system with a latch to manually put the foundry into a forge mode. A one inch water pipe is connected to the tank .Inside of that one inch water pipe is this bit of one inch shaft with a hole drilled in to accept a three eighths inch bolt. A rebar with a latch mechanism is welded vertically to this pipe. The latch is pulled to pulled and the foundry is rotated into forge mode. The foundry sits on a cradle during the forge mode .The cradle is made out of two inch flat bar. The frame is constructed from one and a half inch by one and a half inch angle iron that I had laying around. To start the system , we use a little piece of rag cloth and poke it down into the inlet of the ignition port of the oil burner. We apply a little waste motor oil and start the ignition. Once the flame begins , we apply power to our blower motor by connecting it to the 12V battery. https://www.youtube.com/watch?v=l95fkSaaOEE