DIY Video: How to build a Homemade Gravity fed ,Drip Waste Oil Heater for your Garage .Clean and Efficient

    This project goes over the build of a simple gravity drip fed waste oil burner that can be used to heat your shop/garage efficiently.It heats up the garage to about 30 to 40 degrees. Hot air from the center pipe reaches up to 500 degree celsius. Once dialed in, the smoke clears and the burner is stable at 400’C.

    The materials needed for this project are grinder,MiG welder,plasma cutter, scrap propane tank,hammer,enclosed brake disc, steel cooking pan, 4 inch 10ft pipe, bolts and iron rod and temperature sensor to keep track of the heat.

    The footing and the chimney pipe is welded onto the propane tank.Add a pipe right through the middle and weld the retainers for the pan and the legs around the vessel.

    To improve the airflow , we cut bunch of holes around the legs. Also added some more spaces on the legs to keep the temperature away from the concrete floor. We also make a venting hole on both sides at the middle of the propane tank .

    To adjust the temperature, we add 2 7/16 primary holes right at the base above the heating pan. You control the burner by adjusting the input airflow into the burning chamber.

    Don’t make the air holes for the draft on the burner too big but have plenty of holes so that with the increase the temperature and the increase in airspeed, the draft the fresh air can actually get to the burner, and you will get cleaner burn. These secondary holes allow for more oil splatter to leave the burner if any water content is present.

    The drip system is kept open which helps you to check how much oil flow is there and also as a safety precaution. If there is any kind of flashback, it will pop out of here and not go all the way through the the pipe back into the reservoir.

    This whole system is completely serviceable, completely mobile,not bolted down.You can unhook the chimney, the exhaust pipe, remove the drip system pipe and the rest.

    The drip system is made of heavy pipe and a small ball valve that is welded in place at the distance and at a specific height so as to dissipate the heat coming from the burner. Also you dont want the oil to reverse its direction and go back into the pipe.

    With the help of a fans, we increase the heat dispersion. With two fans,one blows hot air away from the wall and the other allows extra air for the burn.It pulls cold air from the floor and allows fresh air intake. Effective heating and keep the heat away from the wall.

    To start the system, we pour the waste oil onto the steel pan and place it under the burner. Make sure you dont have any trace of water in the pan or oil. The oil will splatter out of the secondary holes if there is water.The more you can bring in to the burning chamber,the more it will burn and more it will smoke.



    RECENT POSTS YOU MIGHT LIKE
    • How to build a Simple Homemade Wind Generator from Old Ceiling Fan ,Microwave Oven Parts ,Old TV Antenna and other free junk
      This project goes over the build of a homemade wind generator built from random junk ceiling fan ,microwave oven transformer ,office chair, an old piece of a TV tower, and some random electrical stuff. The blades are also from an old ceiling fan .It is extended with some wood and fibreglass on it to make it stronger. A scrap piece of pipe is attached as a shaft to the hub of the turbine. An office chair frame which can move freely is welded to the pole/post of the turbine. This is welded to an old TV Tower. 4 magnets are glued on the hub. The frame of an old microwave oven transformer is cut .Its core is exposed and that is welded onto the brackets. The magnets pass over the transformer core and induction takes place creating electric current. We can use that current to charge a battery or to power lights or whatever. A multi transformer setup would generate more power. We hook up a rectifying diode to convert from AC to DC and some capacitors which can even out the voltage and give us direct current. Also a diode to block the current from the battery to go up back up to the generator. This set up can charge small batteries. A piece of sheet metal is welded onto the bracket of the ceiling fan. Four magnets are spaced apart and aligned along their respective poles in north-south directions and glued to the bracket using 2 part epoxy. To generate more wattage from the wind generator ,we use an old 120V DC lawnmower motor. Because we have multiple poles, we have magnets that are really close to the armature, this is a way better motor to use. The only downfall of this is that it has brushes, eventually it's the brushes are going to wear out, you probably get a few years out of it before you need to replace those. This motor would probably put out about 100 watts. https://www.youtube.com/watch?v=1k8aHz6xlXg
    • How to build an Off Grid Hydraulic Ram Pump that uses no electricity to pump water .
      Water is one of the most important resources you can have and to get water to the highest point in your property, so that you can store it and water your gardens and your animals and your orchards is incredibly valuable. This project goes over the build a water pump that can pump water uphill with no other external source of power except for the water flowing into it. If you have got a piece of land with an abundant source of water like a pond or a creek, a ram pump lets you get that water to a tank or a location at a higher elevation without using no electricity or fuel. A ram pump is essentially two one way check valves, one called the waste valve and the other called the delivery valve. To get it started, you just momentarily open the waste valve to allow water to flow. After that it's working on its own to pump the water uphill above the elevation of the source. The ramp pump works by the principle of water hammer. As the waste valve opens, water flows into the pump and immediately out the valve. But as it picks up speed, the flowing water eventually forces the waste valve to slam shut. Now the water is stopped in the pump, it had kinetic energy, but now it doesn't. That means that kinetic energy was converted into pressure. Slamming a valve shut converts all the kinetic energy nearly instantly, creating a huge spike in pressure which opens the second check valve and forces water entering the pump into the delivery line. An pressure tank is included in the pump to smooth out those sharp spikes and pressure and provide a more even flow rate out of the delivery pipe, reducing wear and tear on the pump components. Here we use a PVC cylinder as the pressure tank. As the delivery pipe is opened, it will allow a constant flow of water as the pressure builds. If you open the valve too quick, this will hold a certain amount of pressure in it so that the pump doesn't stop due to pressure loss. To get the water to the pump somehow from your source, you need to have a tube or pipe. This pipe is a called a drive pipe. This need to have head pressure or drop in elevation. The drive pipe has same size as the waste valve. The more rigid the material, the more efficient your pump will be. You can use steel or PVC pipe or flex tube. To get the water to our desired destination, we are going to have to have something called a delivery pipe. Here we are using garden hose as the delivery pipe. Here are the steps to assemble a one and quarter inch hydraulic ram pump. The parts you need to build this pump are : Six one quarter close pipe nipples - This allows the components to be screwed close together and not have any extra gap between. Two three quarter pipe nipples 2 One and a quarter ball valves 3 quarter threaded union 2 One and a quarter PVC union 2 threaded PVC tees - threaded on all 3 sides A threaded spring check valve - This has a spring on the inside. That allows water to flow through one direction and not the other. A bushing that goes from one and a quarter down to three quarter. A brass or stainless steel swing check valve - This is threaded on both ends. And inside there is a little lever that closes on a swing motion. Teflon pipe tape to make sure things are tightened up and couple of wrenches. The first step in the pump assembly is to take the Teflon tape and put it around these one inch and three quarter pipe nipples. This is done in a clockwise position such that whenever it is time to actually screw components onto this, we want to make sure that they do not unscrew or remove the Teflon tape. This pipe tape will allow the components to screwed together in a more fluid manner. And it helps to create a better seal in the components. Next step is take your one and a quarter ball valve and a pipe nipple and thread that together. Take the one and a quarter union and connect it to the other end of the taped nipples. Connect a tee to this unit with the help of another pipe nipple. Next is attaching a spring check valve to this unit. You need to make sure that the flow is pointing away from the components we just put together. There's an arrow on these that distinguishes the flow direction. Connect another PVC tee to the valve through a nipple. A threaded bushing is going to go on the end of that second tee. On that three quarter bushing, we are going to put one of the three quarter pipe nipples. From that pipe nipple, we are going to put the other three quarter inch union. A three quarter ball valve is connected to this end through another pipe nipple. We connect the swing brass/stainless steel check valve to the first PVC tee with the help of another pipe nipple. When connecting the check valve, make sure that the door or flapper is going to fall open from gravity. So it is going to screw on to this pipe nipple with the door hanging open. The second PVC tee is connected to the pressure tank with another pipe nipple. Make sure that both tees are facing in the same direction. To build the pressure tank for the one and a quarter pump, you need a four inch PVC schedule 40 pipe , four inch coupling, four inch socket to one and a quarter threaded bushing , a four inch cap , bicycle inner tube. Take your angle grinder and cut a 17 inch long pipe from the four inch PVC schedule 40 pipe .Once the pipe section is cut, it's time to assemble the pressure tank. Coat the inside of the coupling with a PVC cement and stick our 17 inch pipe inside .Make sure it is real snug in there . The other side of the coupling is connected to the threaded bushing. Next step is to insert the bike inner tube into the pressure tank .Grab it from the underside and pull it enough that we can attach my pump to it. Start filling the tube with the bicycle pump. Pump until the whole tube seems tight. Put the cap back on the top and seal them tight using pvc cement. The last step is to attach your pressure tank onto this threaded nipple that is connected the second PVC tee on the pump. Next step is installing the ram pump near the water source .This one and quarter inch pump requires around eight gallons per minute to operate. The amount of water that you get at the top is increased as the pump size goes up. So to start the pump, first you need to close the ball valve for the delivery pipe and make sure the ball valve for the drive pipe is opened. You need to just push the waste valve down until all the air inside the drive pipe is out. Water comes down this drive pipe and slams against the check valve to shut it down . It creates a pressure wave that gets shot back up the drive pipe .If the pressure wave finds an air pocket ,then the pump will stop. Start priming the pump by opening the valve manually couple of times until the pump starts to work on its own. After the pump has been running for a minute or two, you're gonna open up your delivery pipe valve out because the pressure tank now has enough pressure in it to push water uphill. https://www.youtube.com/watch?v=K8Fy__ThqpQ
    • How to build a Simple Homemade Bandsaw Mill from Old Car Wheels
      This project goes over the build of a simple Bandsaw from old car wheels .Car wheels are big and heavy, but in many ways, they are ideal for bandsaws. They are available everywhere cheaply. They have a rubber tire for the blade to sit on, and they have excellent bearings. Take apart the brakes, the backplate , bearings and the stub axle out of the housing. Weld the stub axle onto an off cut of scaffolding. So we now have two wheels, spinning on the ends of two straight lengths of steel. We take some scrap angle iron pieces and make a rectangular frame for the mill. This form as the base of our mill. In order to make the sliding mechanism, we take a scrap pipe and try to fit it onto a square iron pipe so it can slide in and out smoothly. This will be used for all adjustments. This is welded onto the frame. A Steel plate is welded onto the sliding bars. This is for the engine to sit on. The engine will drive one of the car wheels We mount the 11 HP Petrol Engine to steel plate and the tire is connected directly to the engine shaft through a drive belt. The drive wheel is bolted on to the frame ,also added a lever for the engine mount which will act as a sort of clutch, tightening and slackening the belt when necessary. We add two more pipes on the bottom of the frame and slid them to the support platform of the second wheel made from the same square box iron and some short sections which is part of the blade guide. The second wheel has to be adjustable in a few different directions and has to be lined up with the first wheel so the blade stays on them both without running off the tires. To adjust the tension on the blade by moving the wheel away from the first one, we use a bottle screw. The blade guides are made from cheap bearings. They needs to be adjustable so that the saw can cope with logs of different sizes. The blade guides help keep the blade straight as it goes through the log and also stops the plate being pushed off wheels The band saw has to go up and down so that it can cut planks from a log. We make a simple frame to hold it. It has to fit inside vertical pieces of angle iron on the saw. The support frame is bolted onto to the saw by using a bracket which grip the uprights. Couple of barn door pulleys are bolted onto the top of the support frame and the mill frame. A trailer winch is bolted on to the middle of the support frame. Using a 3mm wire and winch-pulley system, we can move the wheel frame up and down. Two short pipes are added at the front and these hold up a guard which can be taken off when we need to get at the belt or the blade. If the blade snaps, the side guards should make sure that it heads down towards the ground and not up to the ceiling. The saw is stationary and the log is moved through it using dolly trailers or rails. https://www.youtube.com/playlist?list=PL3_dJayH6e6ibBd5sA6WgXO99zf2zBsUe