How to build a Simple and Efficient Homemade Water Distiller for cheap .Great for everyday use or in emergency/off-grid situations.

    This project goes into the build of a homemade DIY Water distiller that can purify dirty and contaminated water and desalinate salt water into clean drinking water. The total cost of this build is about sixty dollars. For distilling water, you need three thing – water, a source of heat, and some sort of apparatus that will allow water to boil into steam and then recollect that steam , condensing it back into usable water.

    A water distiller basically needs to do two things, it needs to boil water to create steam, and it needs to capture that steam in a way that allows it to condense back into water. The materials you need to build this distiller are six quart stainless steel pressure cooker, 20 foot three eighth inch copper tubing, two gallon bucket, jb weld, zip ties, flat bar, five sixteenth inch silicon tubing, mason jar.

    The first step is to boil the contaminated water in a tea kettle or a pressure cooker. Here we use a six quart stainless steel pressure cooker. Since the boiling water must be directed to the condenser, something with a sealed lid of some sort is needed. The existing pressure valve of the cooker is removed and replaced with a barbed fitting .A small rubber O ring gasket is used to tighten the new fitting.

    Next step is to make the condenser. The purpose of a condenser is to give steam the opportunity to cool back down enough so that it turns back into liquid water. The condenser is built using a 20 foot three eighth inch copper tubing. This is reformed into a tighter and taller coil such it will fit into a two gallon bucket.

    Because it needs some sort of support to avoid having the coil collapse under its own weight, a flat bar bent into a U shape is placed under the coil. A small cross piece is attached to it at the bottom using JB weld. The coil is attached to the punched bar with some zip ties.

    A hole is drilled near the bottom of the bucket to allow the copper tube to drain out the condensed water . The coil is placed inside the bucket carefully and the tail end of the coil is pushed into the drain hole .

    The condenser is connected to the pressure cooker with a 5/16th inch silicon tubing. A similar silicon tubing connects the bottom of the condenser to the clean water receptacle like a mason jar.

    When distilling water , cooling the steam back down is very important. The coil itself will cool some of that down. But that alone isn’t enough at this scale. It will end up losing a lot of steam through the bottom of the condenser because not all of it has been able to cool and condense by the time it reaches the bottom.

    An efficient way is to add a cooling element to the condenser. Filling the bucket with ice water will increase the efficiency and water output by a lot because it will cool the copper tubing much more than air alone. Doing so had an immediate effect and all of the escaping steam condensed instantly to liquid water. By periodically adding cold water through the distillation process, it practically eliminated all of the steam waste coming out of the condenser.

    The gap around the copper tube where the hole is drilled is not sealed. This is because of two reasons. The first being able to easily remove the condenser from the bucket for cleaning and maintenance. The second reason being it acts as a drain. The boiling steam causes the copper tubing to get very hot. Because of this, it heats up the cool water very quickly and this drain makes it convenient in that the water will drain out before it gets to that point.

    In a survival situation , set the condenser over a larger bucket to collect and reuse the cooling water as it drained out and not simply let it go to waste.

    • DIY Video : How to build a Survival Water Distillation System for under $5 and turn Salt Water Into Fresh Water
      This project goes into the build a simple survival water distillation system to turn your salt water into drinkable fresh water. This setup can be made with little more than two glass bottles, some metal trays and some sand. So the primary components of this setup are two glass bottles, the wider the bottles are in diameter ,the better and a pair of metal trays. The first part of this process will be to prepare an area such that the two bottles can rest mouth to mouth. The important part is that one of them needs to be suspended over a heat source. This could be done over an open campfire, you just need to find a way to suspend the bottle above the flame either using rocks or logs. Cut a small notch on one side of the pan so that the neck of the bottles can sit a little lower in the pan. This is by no means necessary, but it will make the setup a little more secure. With the trays secured in place, both of them are now filled with sand. The sand will allow the trays to more efficiently act as heat sinks, one tray to cool one of the bottles and the other tray will be used to very evenly heat the other bottle so that it doesn't shatter from being heated too much on one side. The bottle is pressed firmly into the sand so that it gets good thermal contact and will be heated evenly. The second bottle is adjusted such that its mouth will meet up with the first and it is also pressed into the sand to obtain good thermal contact. Another reason that I'm using sand for this is because it makes it very easy to adjust the bottles angles and it is best to make the bottles meet up as evenly as possible so that there is not much room for water vapor to escape. We want it all to make it into this second bottle where it can condense as freshwater. As an additional measure to keep the cold half of the bottle cold, we wet the sand on this bottle with water or cover them with a wet cloth to allow evaporative cooling to take place. With such a large quantity of sand in this tray it does take a little while for it to reach the boiling point and get this process started. But once the sand has reached that point, it stays hot for a long time. So it is a pretty quick process as the water boils dry in this first bottle to simply refill it and you can continue on with the distillation process as long as you want. Rotate the bottle so that the top portion becomes hot from the steam, it is rotated into the cold sand below. And in that way the entire bottle maintains a cold temperature which causes the distillation to go much faster.
    • How to build a Homemade Multi Use Water Purifier that uses no electricity .Works as Water heater and stove burner too….
      This project goes into the build of a simple and cheap two stage DIY water filter.Also doubles as a stove burner. The materials needed for this build are some bricks,bottles,copper coil,activated carbon,sand,gravel I got the sand and activated carbon water filtration part on the far left. In the middle, I've got it heated in a copper coil running on isopropyl alchohol. The purified water is coming out on the right side. The first step is to make the 1st stage filter. We take a 2L bottle cut in half, drilled a quarter inch hole on the bottom and drop in a couple of cotton balls and pack it in there. Next step is to add the activated carbon,sand and gravel.Rinse all of them before adding . Align the bricks and place the cans on top. Place a small tin with the isopropyl alcohol inside the middle can. A copper coil is inserted into the middle can and connect between the first can and the water bottle. Add the sand mixture filter bottle on top of the first can below the copper pipe. For the first can the one that holds the activated carbon filter,just remove the label and drill one small hole at the bottom. Then for the second cam that holds the copper coil, you cut down the top, take about a third of circumference off and cut about two thirds of the way down. Then put one small notch on the top and a hole down below for the coil. To make the copper coil just wrap it around from top to bottom in a smallcan, push the can out and leave about a foot on either side. Notice I added a couple of bricks and pointed the end of the copper tubing down directly into the can so we won't lose hardly any water and make sure to drill those steam vents so the pressure doesn't build up. Make sure to drill vents on the bottle so that the pressure doesn't get build up. Pour the alcohol under the coil and fire it up. Just put a little in ,you don't need too much. A full glass of water gets purified in three to three and a half minutes. This gravity fed two stage water filter should take care of pond water stream water swamp water, just about any water you can think of. Don't try using this without the heavy sand gravel and activated carbon in there or the water will backflow and it may spray out. An easy way to store this filter when you're not using it is just save the bottom half of the two liter bottle you cut in half and drop the filter in it ,holds it perfectly. This cheap 2 stage heated oil water purifier can also be used to both purify water and cook at the same time.
    • How to build a Simple Homemade Wood Burning Stove heater with Heat Exchanger for your Garage .No Electricity required and Inexpensive‚Ķ..
      This project goes into the build of a homemade wood burning heater with a heat exchanger for your garage . This heater is build from a recycled old propane tank . The other materials you need to build this heater are 55 gallon drum, fan blower, quarter inch steel plates , eighteen 2 inch steel pipes for the heat exchanger, welding unit, plasma cutter. Before cutting into the propane tank , make sure to clean the tank so that there is no residual gas left in it . Cut both ends of the tank using the plasma cutter. Now we cut a 30 inch length piece from the tank .This acts as a main body where the heat exchanger pipes are installed. The heat exchanger consists of 18 two inch pipes that run the length of the heater from front to back. Two quarter inch steel plates are welded at the ends of the propane tank . Before doing that we make 18 holes at both the ends of the steel plate. This is done to install the heat exchanger pipes across the length of the tank. With the help of an eighth inch hardboard, we make a template for cutting the 18 holes out of the steel end plates. The hardboard acts a guide for the plasma cutter to cut the holes. The pipes for the heat exchanger are cut 31 and half inches long. Half inch sticks out at both the ends of the heater. They are welded to the steel end plates at both ends. The opening for the door at the end of the heater for the wood intake has a dimension of 16 inch X 12 inch . A similar template is placed on the end plate and the opening is cut using the plasma cutter. A frame around the door is made using a three quarter inch by three sixteenths inch flat stock .This is used for the door opening and to give the door something to close up against. Hinges are welded near the door opening for attaching the door. The locking mechanism for the door to hold it shut is made using a flat stock and couple of bolts . The bolts are welded onto the flat stock and attached inside the heater just beside the door . The handle made of a 90 degree round stock is welded to couple of washers and the door is sandwiched in between. The end plates along with the door is welded onto the body of the heater at both the ends and a hole is made at the top of the propane tank body for installing the flue exhaust pipe. A small hole is cut near the door and a damper in the form of a simple sliding door is attached to the hole that will control the airflow into the heater. A section from old 55 gallon steel barrel is cut and welded onto the backside of the heater .An inexpensive fan blower is attached to this 55 gallon drum . This is installed to concentrate the air that is going through the heat exchanger pipes. The flue pipe is welded onto the top of the heater so that the harmful smoke and gases escape through the exhaust . A grate is placed into the heater through the door opening , wood pieces are introduced and the we start firing the heater. After few minutes , the fire will heat the heat exchanger pipes . The fan blower is turned on and the hot air is blown through the pipes into the garage .