How to Recycle Old Used Laptop Batteries to make a DIY 24V 72AH Emergency Backup Battery System

    This project goes into the build of a 1.72kwh emergency backup battery system out of old and used laptop batteries and an old military surplus ammo box. The materials you need to build this project are lithium ion 18650 batteries from old laptops, 4X5,3X5 cell holders, ammo can, 40 Amp BMS or Battery management system, spot welder, fused nickel strip, heat shrink, kapton tape.

    First we determine how many batteries that we can pack inside the ammo box. In our case, we have 2 packs of 91 18650 cells , a total of 182 cells. We take the 4 X5 and 3 X 5 cell holders and connect them to make a couple of 7 x 13 cell holders.

    To make this 24V lithium ion battery , we need a 7S ( 7 cells in series connection) combination . A single lithium ion cell has a nominal voltage of 3.7V . To make a single long 7S configuration battery , we connect 7 groups of 26 cells in series to get the 25V nominal voltage.

    The cells used in the build are Samsung ICR18650 – 28A with a capacity of 2800Mah .The cells are rewrapped with heat shrink and added an insulator disk at the positive side of the cell for safety. The cells are installed on the holder in such a way that the first 26 cells are in a same polarity and are connected in parallel. Next 26 cells are installed with opposite polarity and is the connected in series with the first 26 cells . The rest of the cells are connected in the similar way to make a final 7S 2P ( 7 series and 2 Parallel ) configuration with max capacity of 26 X 2.8mah or 72.8 amp hours.

    A four wide fused nickel strip is used to connect the batteries in series. The nickel strip is placed over the first 4 cells and spot welded in place using the sunkko spot welder. Each cell is individually fused in case there is short circuit or malfunction. The nickel strip connects the first two rows in parallel and then connects the next two rows in series .

    Similarly, to complete the series connections, the nickel strips are placed and welded on the opposite side of the pack in such a way that it wont short out the connection by coming in contact with the most negative side of the battery.

    We take 0.15mm standard nickel strips to connect the positive ends of the whole pack together. The last 2 rows of most positive end are connected together using the nickel strip . Small pieces of nickel strips are placed across these two rows to connect them in parallel . The pieces are bent so that it can be connected to a separate copper busbar.

    The separate 2 battery pack of 7 X 13 cells are connected together by the nickel fuse strip in such a way that one of the pack is flipped on top of the other. The nickel strip that connects the first 3 connection on the 1st pack is bent to connect the 4th connection on the other pack. A 90 degree bent on the last row of the 4p fused nickel strip is welded on to the first battery pack.
    A piece of kapton tape is placed over the nickel strip to insulate it and hold it together.

    The bent nickel strip on the first pack is placed on the other pack is such a way that the fuses are perfectly aligned . Then it is welded using a spot welder. A one sixteenth inch ABS plastic is placed in between the two packs. The second pack is now slowly folded over the top of the first pack. The whole pack is then wrapped around with the kapton tape so that it doesn’t move around.

    The last three unconnected terminals on one side of the battery pack is connected to the single row of unconnected terminal on the other side with help of four nickel strips. The 4p fused nickel strip is cut to connect the 3 sides and the other side.

    To connect the main negative and the positive tabs , we attach a THHN copper wire across the both the terminal ends. The extended nickel connections are folded across the wire to hold it into place and soldered . The terminal wires are then connected together with XT90 connector.

    Next step is to connect the BMS or Battery management system to the pack . This is a small circuit board which is used to protect each cells of the battery pack from overcharging and becoming unbalanced and getting damaged. It stop the over draining when the cells are fully charged. The BMS used here is a 7S 24V with charge current of 20A and discharge current of 40A. It has two negative leads, one connecting the battery and the other for charging and discharging.

    The BMS also has 8 sense or balancing wires which are connected to each series connections on the battery. The black wire is connected to the most negative terminal of the battery. The first red wire is connected to the first series connected group of cells, the second red wire is connected to the second series connected cells and so on. The last red wire is connected to the main positive terminal of the battery. A heat shrink is wrapped around the whole battery pack for added safety .

    Before inserting the battery pack into the ammo box, a hole is drilled on the back side of the ammo can to allow the cables from the battery to pass through. Also a small piece of one sixteenth inch ABS plastic is placed at the bottom of the ammo box as a support and insulation.

    The battery is slowly dropped into the box . The BMS is placed on the top and is connected to the XT90 connector and the balance wires from the battery. The B- terminal on the BMS is connected to the XT90 connector on the battery. The black wire on the BMS is the charge and discharge lead. To provide extra insulation between the battery pack and the the ammo box ,we attach two pieces of the insulting ABS sheet on either side of the box.

    The lid is put back on the box and the battery build is complete.



    RECENT POSTS YOU MIGHT LIKE
    • DIY Video :How to build your own Homemade Lumber Mill from Scratch .
      This projects goes over the build of a cheap homemade lumber mill using materials around your home This mill has a 12 inch saw blade purchased from Home Depot that cab do cross cuts, or it can do longitudinal rip cut.I am gonna be cutting the long direction on the word. First step is building the rollers. Four rollers are made out scrap materials lying around. The wheels are made of polycarbonate material .These are adjusted on a drill to ensure that they roll smoothly on the pipes. Next step is the build the tracks.Here I use 2 old steel pipes and welded to make a long one. 3 more pipes are welded on top of those 2 long pipes horizontally to give stability. Make sure the pipes are all lined up . 2 rolling carts are made from the leftover pipes tha slides across the pipes.Make sure these are parallel to each other.4 sliding pipes are bolted on these carts. 4 pieces of pipes are welded on top of these rolling pipes that are paralled to the horizontal pipes below .They act as a crank that can pull the sliding pipes. Threaded holes are put along the pipe that connects the sliding pipes.2 cables are connected in opposite ways to a small spring pulley system that can help sliding pipes move vertically up and down when the top crank is rotated. The Saw Blade is attached to a steel rod.The blade is attached to a washer on the other side to ensure it doesn't fly off. The axle is passed through a square metal box which is bolted using a bearing on both sides. The motors attaches to the top of the box mount .A pulley is then attached to the metal rod from the motor using a small wheel. The next step is to take whole side assembly thing attach it to the cart so it can pivot. Ball bearings are attached to the box on both sides.This must be placed at a very specific distance away from the blade. So that when I flip it the the edge of the blade will line up so it cuts clean without cutting deeper into the wood and without not cutting far enough and leaving it still attached.When its swiveled it will pivot the blade perfectly. Next step is make take the whole motor and blade assembly and attach it to our rails so that it can slide and rotate . We attached 2 pieces on both sides of the motor blade assembly to ensure that the system stays perfectly straight while cutting horizontal or vertical. https://www.youtube.com/watch?v=KtL7LoFeTyg https://www.youtube.com/watch?v=txUgR7kYpgI https://www.youtube.com/watch?v=LUxo36NebVA https://www.youtube.com/watch?v=IOEHT1UrbKM https://www.youtube.com/watch?v=deblj68KZug https://www.youtube.com/watch?v=Axo2w5_qHd8 https://www.youtube.com/watch?v=_uhvSBLY0Xc https://www.youtube.com/watch?v=5sPu_TcUtyU
    • How to build your own 24 X 24 Garage and save money. Step by Step Build Instructions
      This tutorial goes over the basic overview of a 24x24 , two 9 foot door,one side door window garage.First of all,you will need to take permission from the building inspector.The inspector makes sure that you are within zoning requirements.You will need the paperwork ,plot plan when you go to the building inspector and those are available from your assessor's office or the town hall or you may have one with your deed.Started with a bucket loader come in, take out some trees level off the area remove blushes and prep for the concrete work. The first step is to dig down and install the footings where the wall is kind of set.Here I have a four foot wall put in with the floating floor. Wall of the foundation is about six inches high, it goes into the ground four foot.And one reason that I wanted the wall foundation versus a flat pad foundation is because of the bug issues. After the footings are dry in a few days,the walls are put up and I have the openings for the two nine foot doors and a side door. After they dry for a few days,the floor screen is laid .This is a standard 4 inch thick flooring. Floating floor means that in reality, if the ground swells during the winter time, the floor can actually rise up and sink down. But it prevents it from cracking because it does have a little give to it. So it's not actually connected to this wall. It's poured right up against it, but the floor is a separate piece by itself. When the walls are poured every four foot they have a half inch threaded rod that's embedded into the concrete while it's still wet, it goes down about maybe a foot and a half has an L shape on the bottom in the rod will stick up directly in the center of the 2 X 4. 2 inlets for underground wiring,a 50 and 130 amp circuit.Its buried four foot down through the PVC. The walls are standard 2 X 4, a double sill plate and a top plate those are the two that run horizontally. I use pressure treated against the concrete which will take care of the bug issues. The headers for the garage door is standrd 2X10,double up half inch plywood in the center. The plywood on the three sides and trusses are put up.The trusses are put upside down and they are flipped up.But once they're up there I marked the top sills where I wanted them nailed them and put braces across the top,measure and straighten them out. The first truss on the end of the building on both ends is called the gable end. It's a little different than the other main trusses.The trusses are 24 inch on center, which means that they're spaced 24 inches apart,unlike the walls which are 16. The roof and the sides are on half inch plywood.I also run some stringers down the center and off to the sides to help so they won't twist during a snowstorm.One thing that's very important is when you put up the plywood the very first piece that you put on is the most important piece of wood that you're going to put on this garage because everything references off that one piece.It has to be square to the gable end . When the first piece of plywood is put up, you install the plywood ties between the trusses and all that does is if the roof gets moisture from inside the garage,it will tend to flex.The ties help in keeping them nice and flat and avoid the bowing. The truss catwalk goes right down the center that stabilizes the horizontal bottom piece of the truss. The doors are framed and roof is made of standard architectural shingles.These shingles have more lifespan.Also added tarpaper on the roof.The wiring is through down the center of the catwalk. The finished garage and the build videos
    • How to Recycle Old Used Laptop Batteries to make a DIY 24V 72AH Emergency Backup Battery System
      This project goes into the build of a 1.72kwh emergency backup battery system out of old and used laptop batteries and an old military surplus ammo box. The materials you need to build this project are lithium ion 18650 batteries from old laptops, 4X5,3X5 cell holders, ammo can, 40 Amp BMS or Battery management system, spot welder, fused nickel strip, heat shrink, kapton tape. First we determine how many batteries that we can pack inside the ammo box. In our case, we have 2 packs of 91 18650 cells , a total of 182 cells. We take the 4 X5 and 3 X 5 cell holders and connect them to make a couple of 7 x 13 cell holders. To make this 24V lithium ion battery , we need a 7S ( 7 cells in series connection) combination . A single lithium ion cell has a nominal voltage of 3.7V . To make a single long 7S configuration battery , we connect 7 groups of 26 cells in series to get the 25V nominal voltage. The cells used in the build are Samsung ICR18650 - 28A with a capacity of 2800Mah .The cells are rewrapped with heat shrink and added an insulator disk at the positive side of the cell for safety. The cells are installed on the holder in such a way that the first 26 cells are in a same polarity and are connected in parallel. Next 26 cells are installed with opposite polarity and is the connected in series with the first 26 cells . The rest of the cells are connected in the similar way to make a final 7S 2P ( 7 series and 2 Parallel ) configuration with max capacity of 26 X 2.8mah or 72.8 amp hours. A four wide fused nickel strip is used to connect the batteries in series. The nickel strip is placed over the first 4 cells and spot welded in place using the sunkko spot welder. Each cell is individually fused in case there is short circuit or malfunction. The nickel strip connects the first two rows in parallel and then connects the next two rows in series . Similarly, to complete the series connections, the nickel strips are placed and welded on the opposite side of the pack in such a way that it wont short out the connection by coming in contact with the most negative side of the battery. We take 0.15mm standard nickel strips to connect the positive ends of the whole pack together. The last 2 rows of most positive end are connected together using the nickel strip . Small pieces of nickel strips are placed across these two rows to connect them in parallel . The pieces are bent so that it can be connected to a separate copper busbar. The separate 2 battery pack of 7 X 13 cells are connected together by the nickel fuse strip in such a way that one of the pack is flipped on top of the other. The nickel strip that connects the first 3 connection on the 1st pack is bent to connect the 4th connection on the other pack. A 90 degree bent on the last row of the 4p fused nickel strip is welded on to the first battery pack. A piece of kapton tape is placed over the nickel strip to insulate it and hold it together. The bent nickel strip on the first pack is placed on the other pack is such a way that the fuses are perfectly aligned . Then it is welded using a spot welder. A one sixteenth inch ABS plastic is placed in between the two packs. The second pack is now slowly folded over the top of the first pack. The whole pack is then wrapped around with the kapton tape so that it doesn't move around. The last three unconnected terminals on one side of the battery pack is connected to the single row of unconnected terminal on the other side with help of four nickel strips. The 4p fused nickel strip is cut to connect the 3 sides and the other side. To connect the main negative and the positive tabs , we attach a THHN copper wire across the both the terminal ends. The extended nickel connections are folded across the wire to hold it into place and soldered . The terminal wires are then connected together with XT90 connector. Next step is to connect the BMS or Battery management system to the pack . This is a small circuit board which is used to protect each cells of the battery pack from overcharging and becoming unbalanced and getting damaged. It stop the over draining when the cells are fully charged. The BMS used here is a 7S 24V with charge current of 20A and discharge current of 40A. It has two negative leads, one connecting the battery and the other for charging and discharging. The BMS also has 8 sense or balancing wires which are connected to each series connections on the battery. The black wire is connected to the most negative terminal of the battery. The first red wire is connected to the first series connected group of cells, the second red wire is connected to the second series connected cells and so on. The last red wire is connected to the main positive terminal of the battery. A heat shrink is wrapped around the whole battery pack for added safety . Before inserting the battery pack into the ammo box, a hole is drilled on the back side of the ammo can to allow the cables from the battery to pass through. Also a small piece of one sixteenth inch ABS plastic is placed at the bottom of the ammo box as a support and insulation. The battery is slowly dropped into the box . The BMS is placed on the top and is connected to the XT90 connector and the balance wires from the battery. The B- terminal on the BMS is connected to the XT90 connector on the battery. The black wire on the BMS is the charge and discharge lead. To provide extra insulation between the battery pack and the the ammo box ,we attach two pieces of the insulting ABS sheet on either side of the box. The lid is put back on the box and the battery build is complete.