How to set up a Complete Off the grid living System using Solar and Wind Turbines . Make your own Power and never pay for electricity again.

    If you’re going to run your home ,cabin or garage off grid, you are going to need some way of having power. Enter Solar and Wind. This project goes over the build of a complete off grid power generation system that can harness the clean and green renewable energy of the sun and the wind.

    Here is the basic rundown of the system .We go from sun to solar panels, there is no limit on how many solar panels we can put. It goes into a charge controller, it helps the solar panels create really efficient electricity to be pumped into your battery bank. Charge controller also makes sure that the batteries are being charged correctly and stay optimum. So solar panels to charge controller, and then that goes directly to your battery bank.

    The other source of renewable power is wind. The wind turbine is connected to a stop switch that goes into your battery bank. In some cases in between you can put up a wind turbine charge controller.

    Next step is converting the DC power to AC power with an inverter. The inverter basically converts the power to make it usable for your home. The inverter also has to be sized appropriately. From inverter to breaker panel which spreads the the power out throughout your house through your light switches, wall sockets. From breaker panel straight to your house or cabin.

    The first step is sizing your system. The battery voltage is going to determine what type of equipment you are going to be buying, and how you are going to be wiring your battery bank. So if you go with a 12 volt system, then you are going to want to make sure that your solar panels are wired up correctly for 12 volt. Even when you go with a wind turbine, you are going to want to make sure you buy the correct wind turbine for your battery voltage .So everything has to be sized appropriately so that you can collect as much energies as efficiently and then you can draw that power out.

    The golf cart batteries in my system are of 6 Volts. I have 6 of them wired in parallel, and in series to give me a 12 volt battery bank. The control panel box consists of my charge controller, voltmeter and 2 ammeters for both reading both solar and wind power amps.

    Four 12V Solar panels , each 100 watts are wired together . All the positives are connected to each other and all the negatives are connected to each other. The wiring goes straight into the control panel.

    The wind turbine used here is also 12V.The 3 Phase connections from the turbine goes into the bridge rectifier. The negative connection from the rectifier goes straight to the batteries, the positive goes to a junction box that connects the turbine and the inline fuse and 50amp breaker. The negative of the inverter goes into the negative of the batteries ,positive to positive. The romex wire from the inverter goes into the breaker panel in the house.

    The Permanent Motor Alternator turbine stands on a 6 foot pole .We have these two steel pipes that go down into the ground, three feet. There’s another piece of steel that runs across here that’s welded together, and it’s in the bottom, and then we poured concrete over it to anchor it. Three tie down points are connected to the turbine to keep the pole steady from rocking around especially in high winds. So that way, when the blades turn, the bearings don’t get worn out prematurely from wobbling. The Permanent Motor Alternator (PMA) used in this turbine consists of 2 shell casing, two bearings, a rotor inside and a stainless steel shaft.

    The tail of the turbine is made from a sheet metal cut to look like a fin.It is attached to a steel pole.This is further connected to the PMA alternator.

    The 11 blades of the turbine is attached to a hub and a pulley through a steel shaft. The belt is connected to a secondary pulley which is connected to the Permanent magnet alternator. The wire from the PMA is connected through MC4 connectors to the control panel.

    Wind turbine and solar power system overview :

    Setup of the wind turbines :

    • DIY Video: How to build an Efficient Cold Water Powered Radiant Air Cooler that uses no electricity. Turns Cold Water into Cold Air!!
      This video shows the build of a simple Homemade Water-Chilled" Radiant Air Cooler! w/motor speed control!.Made with an 8x8 "water-to-air" heat exchanger, small water pump and a 7" fan. This new design cools air by pumping ice-water (or cold water) thru a water-to-air heat exchanger (copper/aluminum radiator) and then drawing the warm air thru the unit using a 12v radiator fan. the air that is produced is cooled dramatically with no increase in humidity and no need to vent any part of the unit to the outside. the heat is essentially captured into the cold water and the "cold" in the water is released into the room as cold air.

      Watch the DIY Homemade Offgrid Radiant Air Cooler Build Video

    • DIY Video : How to build a Powerful Mini Box fan for or off-grid use, camping, emergencies or everyday use
      This Video shows the build of a Homemade 12VDC Mini Box Fan! w/motor speed control!Powered with a 12v battery or 12v solar panel! Made Sturdy and is SUPER POWERFUL! pushes more air than a fan twice its size.Ithas a whopping 1500 CFM air-flow volume with wind speeds measuring in at over 20 MPH! (32 kph) and with the motor control switch you can set it to run at any of 100 different speeds! .Great for off-grid use, camping, emergencies or everyday use. tip: run it from a cars' 12v cigarette lighter plug.

      Watch the DIY Homemade 12VDC Mini Box Fan Build Video

    • How to build your own DIY off grid / grid down Solar Power Back up system from scratch
      This project goes over the build of a Solar Power Grid Down Backup System to generate your own alternative power.A great way to utilize renewable energy as a backup source of power. Whatever may be the reason , may be to offset electricity bills or for self reliance to provide when the grid goes down, a solar backup system is simply a great way to provide alternative power to maintain a lifestyle of reasonable convenience. If the grid should go down, I can have a freezer, power lighting, pump water, maintain communications, use tools, and charge every little device I have from flashlights to kindles. This Off grid Solar Power System is composed of 5 components. Solar panels to generate the power, a charge controller to charge the batteries, the batteries to store the energy, the inverter to provide AC to the household items you wish to power. Also you need a Kilowatt meter. The kilowatt meter measures two things you have to know how much energy your devices draw at any given moment, and how much power they consume over time. Here we use 100 watt monocrystalline panels, a 40 amp MPPT charge controller, a 1000 watt pure sine wave inverter and to store the energy, 446 volt golf cart batteries totaling 470 amp hours. First you need to size your system by figuring out how many devices you are going to want to run at the same time. This will determine the size of your inverter, the inverters function is to take DC power from the batteries and converted to AC power for use with household appliances. If I have 1000 watt inverter, this means I can run up to 1000 watts worth of devices at the same time. Once you have evaluated every device that you feel that you are going to need, should the grid go down, you are gonna have a good idea of how much power you need to generate each day. The battery bank consists of four, six volt, Duracell SLIGC 125, golf cart batteries connected in series. Golf cart batteries are designed to deliver a lower amount of power over a longer period of time and then recharge quickly. When picking a spot to locate your panels, you have to consider that the sun will be lower towards the horizon in the winter, and closer to directly overhead in the summer. Building a system that actually tracks the sun would be best as the panels are always pointed directly at the sun. Also mount your panels as close as possible to the batteries. This is because the longer your wire run, the more energy is wasted due to resistance. You also need to select the proper gauge wire to transmit the power from the solar panels to the batteries. Between the panels and the batteries is the charge controller ,it controls the charge of the batteries and make sure that the batteries get the proper voltage that they need and that they don't get overcharged. Here we use an MPPT Solar Charge controller. If your solar panels are wired in series and connected to an MPPT charge controller, the voltage adds up ,thus giving us enough voltage to charge the batteries. An MPPT charge controller can charge your batteries nearly the entire time The sun is out. If your panels are far away and you want to save money and wiring, then the MPPT charge controller is way more efficient than PWM. The first step in making your solar system safe is making sure that there's an automatic and a manual way to disconnect power in each segment of the system. Starting right here at the battery box we have a 300 amp manual switch to kill the power from the batteries to the inverter as well as a 200 amp fuse that will blow automatically. Another component to the safety is the grounding. Grounding your system is quite easy to do. So get an eight foot grounding rod and drive it into the ground. Then pick up some copper grounding wire, some lugs and connect the frames have all the panels in any metal components in the system including the charge controller and the inverter.