DIY Video:How To Turn Your Old Fan Into An Airconditioner AC for cheap.

    This project shows you how can take an old table fan and convert it into a simple ,cheap and easy to make homemade AC .

    The materials needed for the this project are a table fan, 75 gallon per hour fountain pump with valve to control the water flow, multi purpose zip ties ,two 3/8th inch transparent PVC Pipe tube, 15 foot quarter inch copper tube,two hose clamps.

    Unhook the locks if any and remove the screen of the fan. Take the copper coil and wind them across the rims of the fan .Secure them tight on the screen using multi purpose ties.

    Add the screen back to the fan body and then adjust the two ends of the copper coil by bending them to face the back of the fan and secure them using ties.

    Two 3/8 transparent vinyl PVC pipes are connected to the copper tube ends using hose clamps.

    We attach the fountain pump to the end of the vinyl PVC tube that goes straight into our cooler. The recirculated water coming from the other end of the tube goes straight back into the cooler bag. The cooler bag is filled with ice packs and water. The water pump is submerged into the bottom of the bag with ice and water over it.

    The water which is pumped with the help of the fountain pump gets recycled through the vinyl and the copper pipe and moves back into the bag, so you dont need to add more water .Both the pump and fan can be connected to solar generator in case if you want to make the system portable .



    RECENT POSTS YOU MIGHT LIKE
    • DIY Video : How to build an Off Grid Water Heater – Hot Water with DIY Firestove
      NEED HOT water? Camping, off grid, this Off Grid Water Heater is the unit to have!.It has given my off grid home comfort and HOT water! VERY simple setup and very economical.Water heating is essential not only for comfort off the grid, but for survival.Hot water is definitely a luxury that you miss when you actually have to go without.In most homes your hot water heater is consuming energy day and night, 24-7. Most hot water heaters are set to keep the water hot at all times, even while you are in bed. This can be quite wasteful. And with the rising energy costs, many people are looking for alternatives,this Off Grid Water Heater can be really helpful.

      Watch the DIY Outdoor Off Grid Water Heater build video

    • How to build a Homemade Hydronic Heating System that can lower your power bill, save heating cost, and could easily be powered in an emergency situation
      This video shows the build of a Home heating system that heat via hydronic (heat produced with water).This hot water heating system us typically installed at the baseboard or, at the very least, a point low to the ground. Since heat naturally rises, placing the heating element at the lowest point in a room is an easy way to evenly heat the air in a space.The hot water in the system is obtained from a boiler in a utility room, and this boiler is heated by gas, oil, or electricity. The hot water is pumped through a system of pipes that are installed in the baseboard. The heat from this hot water is transferred to the room, and once the heat transfer has cooled the water down again, it's piped back to the boiler room, replaced by a fresh influx of hot water, and reheated.

      Watch the DIY Homemade Hydronic Heating System Build Video

    • How to Install a Complete Micro Hydro Alternative Free Power Generation System for your Home.
      This project goes over the details on how you can setup and install a 300W Off the grid Micro Hydro System for your home . The water source mentioned in this project have a flow rate of 15 - 30 gallons a minute and the drop between the source and the house is about 150 feet. The first step is to make an intake angled screen box for the system that helps in channeling the water from the source. The aluminum screen on the top blocks leaves, sticks and other debris to pass through into the box . The box is made of a 24 inch 2X10 ,2X4 and an 2X8 angled piece treated lumber. We add 3 one and quarter inch attachment points on the lower side of the box for the hdpe poly pipes. The box is secured using exterior screws on the outside and inner tubes on the seam to prevent leaks. The box is installed on the creek with help of couple of three and half inch concrete anchors and two boards are screwed on both the sides for support. The outlet poly pipes from the intake screen box goes to 55 gallon plastic barrel which acts as a silt catchment and also an air free source. The 3 outlet pipes are connected to the top of the barrel with the help of uniseal rubber gaskets. A 2 inch pipe is installed midway on the tank for the penstock. We also install an overflow pipe near the top of the tank to take the extra water out and a three inch cleanout pipe at the bottom . The cleanout pipe can be unscrewed to remove the silt and debris out. To take the water from the intake to the turbine, the penstock used here is a 100PSI 1100ft 2 inch poly pipe. A threaded adapter is glued to the outlet coming out of the barrel. It is then connected to a two inch full port shutoff ball valve followed by an another threaded adapter and a pipe. The penstock poly pipe is attached to this pipe using barb fittings with hose clamps. Next step is to install the pressure gauge and the surge tank to our penstock pipe. Water will come down through the poly pipe into another PVC pipe fitted with a pressure gauge, surge tank, two inch closing ball valve and a union to remove the turbine from the pipe. The surge tank is made of a standpipe that will prevent any water hammer affecting the pipes. The two inch poly pipe coming out from the barrel is connected to the two inch PVC surge tank and pressure gauge using regular . If the main shut off valve is suddenly closed, this tank will allow some of the surge to be absorbed. Next step is to build a housing for the micro hydro turbine. It is going to have a lid that opens up and a drain field pipe that goes out back to the creek. The housing for the turbine is made of three quarter inch plywood that is 2 X 2 foot wide and one foot tall. The turbine sits inside the hosing in the middle with the help of some 2x 4 scrap wood and a bucket lid piece. Then a 3 inch exit pipe comes out of here down through the middle of the housing .This drain pipe keeps the water from piling up under the turbine. The Micro Hydro Turgo Turbine is custom built based on the head pressure and the flow rate of the water source. It has three ball valves and four quarter inch jet nozzles coming out of them. The ball valves can be separately turned off when there is not enough water .The turbine is wired up to be three phase. The water coming out of the penstock hits jet nozzles that turns the Pelton wheel which is connected to 3 phase AC motor. To connect the turbine to our house, we use a 10/3 underground feeder wire. The wire is enclosed in a one inch conduit pipe. The proper way to install wire into a conduit is to get your conduit all glued together. And then you have a vacuum that pulls a string through. You tie your string to the wire and then pull the wire through the conduit. The wire goes into the house through a PVC conduit body. We install a junction box on the housing of the turbine to join the 3 phase turbine output wires to the 10/3 UG feeder wires coming from the house. Inside the house, we connect a rectifier to the three legs of the three phase coming from the turbine .This converts the AC generated into DC power. To generate useable power from this micro hydro system we need to install certain electrical devices in our houses. These include the MPPT Charge Controller, Grid Tie limiter Inverter, breaker box, disconnect switches and the batteries. These components are mounted on a 2 X 2 foot ,three inch plywood board. In case there is some excess heat for one of these electronics at some point, we cover the plywood board with a piece of sheet metal so that it will act as a heat sink. From the rectifier, the connection goes into a 25amp breaker box .The red wire goes into the breaker box and then further connects to positive of the charge controller. The negative white wire is directly connected to the negative of the charge controller. The five 12V AGM batteries are connected in series using four gauge cables. The positives from the batteries are connected to the charge controller and the inverter via DC switches .These switches allows us to isolate and disconnect the components individually. The negatives from the batteries are connected to the negatives of both charge controller and inverter respectively. The inverter is further connected to receptacle from where it goes straight to the main supply. https://www.youtube.com/playlist?list=PLTrfbWw_mKRL5Ae_x1Q4-1pOs0NJGwnzi