How to build your own DIY off grid / grid down Solar Power Back up system from scratch

    This project goes over the build of a Solar Power Grid Down Backup System to generate your own alternative power.A great way to utilize renewable energy as a backup source of power.

    Whatever may be the reason , may be to offset electricity bills or for self reliance to provide when the grid goes down, a solar backup system is simply a great way to provide alternative power to maintain a lifestyle of reasonable convenience.

    If the grid should go down, I can have a freezer, power lighting, pump water, maintain communications, use tools, and charge every little device I have from flashlights to kindles.

    This Off grid Solar Power System is composed of 5 components. Solar panels to generate the power, a charge controller to charge the batteries, the batteries to store the energy, the inverter to provide AC to the household items you wish to power.

    Also you need a Kilowatt meter. The kilowatt meter measures two things you have to know how much energy your devices draw at any given moment, and how much power they consume over time.

    Here we use 100 watt monocrystalline panels, a 40 amp MPPT charge controller, a 1000 watt pure sine wave inverter and to store the energy, 446 volt golf cart batteries totaling 470 amp hours.

    First you need to size your system by figuring out how many devices you are going to want to run at the same time. This will determine the size of your inverter, the inverters function is to take DC power from the batteries and converted to AC power for use with household appliances. If I have 1000 watt inverter, this means I can run up to 1000 watts worth of devices at the same time.

    Once you have evaluated every device that you feel that you are going to need, should the grid go down, you are gonna have a good idea of how much power you need to generate each day.

    The battery bank consists of four, six volt, Duracell SLIGC 125, golf cart batteries connected in series. Golf cart batteries are designed to deliver a lower amount of power over a longer period of time and then recharge quickly.

    When picking a spot to locate your panels, you have to consider that the sun will be lower towards the horizon in the winter, and closer to directly overhead in the summer. Building a system that actually tracks the sun would be best as the panels are always pointed directly at the sun.

    Also mount your panels as close as possible to the batteries. This is because the longer your wire run, the more energy is wasted due to resistance. You also need to select the proper gauge wire to transmit the power from the solar panels to the batteries.

    Between the panels and the batteries is the charge controller ,it controls the charge of the batteries and make sure that the batteries get the proper voltage that they need and that they don’t get overcharged.

    Here we use an MPPT Solar Charge controller. If your solar panels are wired in series and connected to an MPPT charge controller, the voltage adds up ,thus giving us enough voltage to charge the batteries. An MPPT charge controller can charge your batteries nearly the entire time The sun is out. If your panels are far away and you want to save money and wiring, then the MPPT charge controller is way more efficient than PWM.

    The first step in making your solar system safe is making sure that there’s an automatic and a manual way to disconnect power in each segment of the system. Starting right here at the battery box we have a 300 amp manual switch to kill the power from the batteries to the inverter as well as a 200 amp fuse that will blow automatically.

    Another component to the safety is the grounding. Grounding your system is quite easy to do. So get an eight foot grounding rod and drive it into the ground. Then pick up some copper grounding wire, some lugs and connect the frames have all the panels in any metal components in the system including the charge controller and the inverter.



    RECENT POSTS YOU MIGHT LIKE
    • DIY Video : How to build a Thermal Vacuum Water Pump that needs no electricity and has no moving parts!
      This Video shows the build of a Solar Evacuated Thermal Vacuum Water Pump works by harnessing the energy of the sun in the day time and then uses the cold of night to create a vacuum in the system that is used to pump water. This is a working prototype of an idea on how to pump water from stagnant water sources cheaply using no moving part.By using the sun's energy to generate both a pressure and a vacuum cycle we create a very efficient water pump, that has only two simple moving parts. This pump was able to move one gallon every cycle to 8 feet high, by creating artificial day/night cycles the pump could move about 1 gallon every 30 minutes of sunlight, or about 12 to 20 gallons a day.

      Watch the DIY Homemade Thermal Vacuum Water Pump Build Video

    • How to convert an Old Ceiling Fan Motor into a 70W Efficient Single Phase Alternator Generator
      This project goes over the conversion of an old ceiling fan motor into an single phase alternator .You can't take your standard AC electric motor and spin it and get an electrical current out of it unless you modify it. The ceiling fan motor used here will produce about 70 volts at one amp which is roughly 70 watts. Through a bridge rectifier we can get about 70 watts of power out of it. We start by pulling the cover of the fan. Inside we have a squirrel cage rotor in the middle and 6 coil windings around it. The coil windings are placed in clockwise and anti-clock wise directions inside the stator. Next we remove the circular rotor from the threaded shaft which is attached to it with help of a vice. We attach the shaft with the rotor through it within a vice. With the help of an extra piece of pipe to give leverage, we press them against the rotor and push it away from the rod and pop it off. We are replacing the rotor that we have detached from the shaft with a two inch hex steel bar . It has six sides that matches with the six coils from the stator. With the help of one eighth inch drill bit we cut a hole in the center of our hex bar. We put the hex bar through the shaft and fit them snugly around the threaded area. We take six one half inch neodymium or rare earth magnets and place them along the the 6 sides of the hex bar. We place them in such a manner that the poles of the magnets are opposing each other. For permanent usage, wrap this with a little bit of tape or glue so that they are held in place securely. We place our modified rotor in the middle of the stator and align them such that they fit in tightly. The outer screen is bolted back onto the motor. We can also add second set of magnets to increase the magnetic field of the rotor .This will also bring it closer to the coils on the outside and increase the overall voltage. To convert the alternating current generated by our ceiling fan alternator to direct current, we use a bridge rectifier. It has 4 poles, 2 for connecting our alternating current, the other plus and negative for DC power. https://www.youtube.com/watch?v=k-4IbLOZwnA
    • DIY Video : How to build a Simple Homemade Heat Exchanger for heating your house .No Electricity required and Inexpensive…..
      This video shows the build of a redneck style off grid wood burning heat exchange we use to heat our house in the winter. It will keep your home warm without electricity, or using the furnace. The air comes in through the front, where there is a lot of spaces along the bottom of the barrel, then gets heated and rises through the duct in to the house.Here,the air from the house does not go into the exchanger, it only pushes warm air into the house.

      Watch the off grid wood burning heat exchanger Build Video