Thank you for subscribing

Hey Survivalist ,


Thanks for subscribing to our newsletter.


– Practical Survivalist Team.


Return to our Homepage


  • How to build a Offgrid Homemade Emergency Washing Machine that use no electricity.Also works as a Composter
    This project goes over the detail on how you can take an old 55 gallon plastic drum and turn that into a hand crank washing machine and a compost tumbler. The frameworks has uprights on the edges, holding up the barrel all the way down. The upright on the sides are 3 foot long 2 x 4. The base that it sits is 3 foot 2 X 4.Long brace that holds the two sides together is three foot eight inches long. You can take apart the whole framework by unscrewing the side rails and store the barrel for using them in an emergency situation. The barrel sits on a one inch hardwood dowel which is installed through one inch hole at the top of the upright. These barrels have a line in the middle of them so it is pretty easy to find the center by measuring across the line and then dividing it in half. The hand crank is made of PVC pipe with some screws to the end side of the barrel. The hand crank gives you something to grab onto if it gets very heavy so you can pull it back up and really move it around. It has a one foot by one foot door on the front .We use couple of cheap cabinet hinges to hold the door up when unloading the clothes. It also has a little S hook latch that locks it into place. A hole down in the middle of the barrel is for drainage. A small plug and a cap acts as a drain. The plug is put through the hole from inside and sealed with the help of PVC glue. Next step is to add agitators to our barrel . As you rotate the barrel, the clothes will roll over those agitators back and forth and get the clothes moving a lot better and help clean it. We add 3 PVC pipes inside the barrel that act as the agitators. You put clothes in through the top and add enough water just to cover the clothes, add any biodegradable liquid detergent and close the lid. Start moving the hand crank back and forth. This will agitate the clothes. The agitators slosh those clothes around, get them grinding against each other and that is going to clean all the dirt out of them. After about 15 minutes of agitation, we pull the drainage plug off the bottom and drain the water or recycle it by collecting them underneath a bucket and pour it around your plants and trees. As long as we are using biodegradable soap/detergent, the soap and the dirt that is in your clothes isn't going to hurt the plants. We put the plug back on, and fill the barrel with some clean water and agitate for another 15 minutes. This is the rinse cycle. Pull the plug, drain that water or use it on your plants. This setup can be also used a tumbling composter. Compost can be made of just about anything that was once alive .You can use leaves, grass clippings, garden waste, kitchen waste, chicken manure or any other waste material. Just dump all in there and turn the compost in there using our handle every couple of days for 2 weeks. We want to keep the compost aerated so that the microbes and bacteria that break down the compost can utilize the oxygen efficiently and help in decomposition. After 2 to 3 weeks, you probably have some pretty decent compost that you can use on your garden. Also through the drain hole, we can collect the residue compost tea which is high in nutrients. You can use that compost tea for plants that really need a good dose of nitrogen.
  • DIY Video:How to build a Super Efficient ,Multi Use Homemade Ammo Can Rocket Stove. Inexpensive,Portable and Leaves no smoke….
    This project goes over the build an efficient clean burn multi use ammo can portable rocket stove . Easy to build , small ,portable , leaves no smoke. The reason it is smokeless is because it uses a secondary burn system . Also can be used as a cooking stove. The first thing you need is an old NATO ammo can. Remove the rubber seal that sits around the top of the can and replace it with a stove rope. The stove rope gets compressed when you close the stove with its closing mechanism and the smoke wont escape from around there. One the top, we have the flue made out of 2 inch stainless pipe .It has two sections, upper section slides onto the lower section. In order to build the flue, we take the top of the ammo can, then place the pipe on top and draw around it that gives the circumference. Take a grinder and simply cut across the shape. In order to get a smoke tight seal, we wrap some stove rope around the flue area we just cut and then insert the pipe and use a jubilee clip around the bottom and compress it against the stove rope. Once this gets up to working temperature, it draws cold air in from down below and expels it out at the top. So all the smoke from the stove gets drawn upwards. We use 2 turnbuckles as a stove door closing mechanism. There are two closing mechanisms on this door. One is a quarter turn latch. So you rotate it, the door opens ,you close and then you rotate it and it locks the door closed. Another mechanism is using a long piece of metal. You can turn each of these a quarter turn and that locks the door extremely tight to fit these turnbuckles . The stove baffle plate is made out of 0.8mm thick thin steel. To make it, measure it up against the stove and bent the steel into that shape. The baffle helps in generating more heat as it keeps the air from escaping the burn chamber. A secondary pipe made of galvanized steel pipe comes from back of the stove and comes across the stove through a small hole. The pipe has been drilled with small holes. When the stove is in operation, this draws in cold air from outside, it gets pre-heated on the way down across the burn chamber. And then the pre-heated air rises and is expelled naturally through these holes. And since this pipe is just under the baffle plate, it reignites the smoke and the smoke is burnt on the way across the upper section of the stove. The stove is insulated using fibreglass and stainless steel from three sides inside, helps in efficient secondary burn. You just need enough insulation to get the temperature high enough to get secondary burn. If the whole stove is insulated then the heat would dissipate through the flue instead. The bottom of the stove is insulated using half inch rockwool and on top we have some chicken wire that stops the burning fuel from sitting on the bottom of the stove and being starved of oxygen. It allows the oxygen to get underneath and burn all the way around the wood efficiently. The primary air is drawn in through an air intake at the side of the stove. To attach it to the stove, bend the pipe around the side and place a jubilee clip and stove rope around to insulate it. So when the stove is in operation, you can add sticks, twigs, pellets or anything you want without opening the door. Burn Video :
  • How to set up a Complete Off the grid living System using Solar and Wind Turbines . Make your own Power and never pay for electricity again.
    If you're going to run your home ,cabin or garage off grid, you are going to need some way of having power. Enter Solar and Wind. This project goes over the build of a complete off grid power generation system that can harness the clean and green renewable energy of the sun and the wind. Here is the basic rundown of the system .We go from sun to solar panels, there is no limit on how many solar panels we can put. It goes into a charge controller, it helps the solar panels create really efficient electricity to be pumped into your battery bank. Charge controller also makes sure that the batteries are being charged correctly and stay optimum. So solar panels to charge controller, and then that goes directly to your battery bank. The other source of renewable power is wind. The wind turbine is connected to a stop switch that goes into your battery bank. In some cases in between you can put up a wind turbine charge controller. Next step is converting the DC power to AC power with an inverter. The inverter basically converts the power to make it usable for your home. The inverter also has to be sized appropriately. From inverter to breaker panel which spreads the the power out throughout your house through your light switches, wall sockets. From breaker panel straight to your house or cabin. The first step is sizing your system. The battery voltage is going to determine what type of equipment you are going to be buying, and how you are going to be wiring your battery bank. So if you go with a 12 volt system, then you are going to want to make sure that your solar panels are wired up correctly for 12 volt. Even when you go with a wind turbine, you are going to want to make sure you buy the correct wind turbine for your battery voltage .So everything has to be sized appropriately so that you can collect as much energies as efficiently and then you can draw that power out. The golf cart batteries in my system are of 6 Volts. I have 6 of them wired in parallel, and in series to give me a 12 volt battery bank. The control panel box consists of my charge controller, voltmeter and 2 ammeters for both reading both solar and wind power amps. Four 12V Solar panels , each 100 watts are wired together . All the positives are connected to each other and all the negatives are connected to each other. The wiring goes straight into the control panel. The wind turbine used here is also 12V.The 3 Phase connections from the turbine goes into the bridge rectifier. The negative connection from the rectifier goes straight to the batteries, the positive goes to a junction box that connects the turbine and the inline fuse and 50amp breaker. The negative of the inverter goes into the negative of the batteries ,positive to positive. The romex wire from the inverter goes into the breaker panel in the house. The Permanent Motor Alternator turbine stands on a 6 foot pole .We have these two steel pipes that go down into the ground, three feet. There's another piece of steel that runs across here that's welded together, and it's in the bottom, and then we poured concrete over it to anchor it. Three tie down points are connected to the turbine to keep the pole steady from rocking around especially in high winds. So that way, when the blades turn, the bearings don't get worn out prematurely from wobbling. The Permanent Motor Alternator (PMA) used in this turbine consists of 2 shell casing, two bearings, a rotor inside and a stainless steel shaft. The tail of the turbine is made from a sheet metal cut to look like a fin.It is attached to a steel pole.This is further connected to the PMA alternator. The 11 blades of the turbine is attached to a hub and a pulley through a steel shaft. The belt is connected to a secondary pulley which is connected to the Permanent magnet alternator. The wire from the PMA is connected through MC4 connectors to the control panel. Wind turbine and solar power system overview : Setup of the wind turbines :