DIY Video : How to turn Dirty-water/Salt-water to a clean fresh drinking water by building a simple Water distillation system



    RECENT POSTS YOU MIGHT LIKE
    • How to build a Backyard Waste Oil Burner Powered Water Heater to produce Free Hot Water for your Home
      This projects goes over the build of waste oil powered free hot water heater for your home .This converts an old used domestic water heater to run on waste oil, engine oil or cooking oil. With as little as one liter of waste oil, this heater gives twice the heat output than a domestic electric powered water heater .As waste oil is free, this is more economical than running on gas or electric. The setup of this waste oil heater is very simple and easy. We have a waste oil burner that is placed under the domestic water heater. The burner is connected to a blower from a car. This blower is powered by a 12V battery charger . The burner is also connected to a drip feed waste oil pipe through a small pipe. The oil feed from a suspended tank, which gives it a gravity feed dribbles into the inlet pipe on the burner and it is simply blown into the burner by the force of the air from the blower. To control the oil flow ,we have a valve on the oil tank. The cold water comes into through the inlet hose at the bottom of the tank . From there burner just fires the heat up through the center of the heater as it would normally if it was gas fired. The hot water comes out from a outlet hose at the top of the tank. The waste oil burner is made out an old fire extinguisher bottle. The beauty of using extinguisher bottles is you don't have to worry about any flammable gases in them, and the metal seems to be quite durable. Make sure that the air and the fuel enter the bottle at a slight angle in order to create some swirling. This makes sure that the air and the fuel mix and will burn completely. And also that the bottle is kept hot so that the liquid oil will vaporize and the gas will burn. The inlet pipe for the waste oil and the blower is positioned at 25 to 35% of the way up to the bottle. The inlet pipe has a small bend in it so as to promote swirling within the bottle. This is important in keeping the bottle hot and self sustaining. The burner has a clean burn with almost no smoke. The output of the oil burner can be controlled by the amount of waste oil being dripped into the burner and by the amount of air blown into it. This oil gas burner is more powerful than a gas burner and the heat produced can overpower the heat sink threshold of the water heater . A vent line is installed on the system so that any build up pressure can be released. Apart from heating hot water , this set up can be used for space heating , pool heating or garage heating. https://www.youtube.com/watch?v=L4xq_GSjWLI
    • DIY Video :How to build a Wood Stove that runs a generator, produces gasoline,runs a fridge and act as a water heater at the same time
      This is a wood powered gasifier stove that produces gasoline runs your generator, runs your propane hot water heater, heats hot water for you all off the grid. A simple design of a mini gasifying woodstove prototype here you've got some open latches, open up the door, the doors got the baton handle so it naturally stops on the downfall Inside the firebox, I've got a gasification style system built in there.One of the key things about a gasifying woodstove is that not only can I run it in a typical gasification wood stove manner, heat my home. But if I reverse that action with a fan and a draw system underneath the stove, with the ability to shut off the flow out the chimney pipe, and then draw down underneath the stove, reverse the action of the system, I can produce syn gas that can go outside and into a generator. This system has little latch up here at the top drops open so you can get in there work the material around.By actually pulling the little latch out and the bottom of the main gasifier inside of there to shut it and rotate it locks into place .It is actually a dump plate on the bottom of the main gasification chamber so that all the ash and all the coal that's not burned can dump out of the system into a tray below. A secondary burn system with two layers of stove pipe, one smaller inner diameter stove pipe and one larger one is made for a better burn to take place with fresh air inlets right there in the chamber. The outer sleeve stops below the bottom allows air to travel up in between rise up to the pipe.There is a set of burner holes that makes sure to mix fresh oxygen that creates a swirl in there and helps burn any leftover syn gas in the production system. So there's no smoke coming out of this in the end. Inside the woodstove is the inner chamber holds all your material, it gets hot and then creates an airdrop between this outer wall and the inner chamber wall that airdrop comes out these holes mixes fresh oxygen into the top of the system with the smoke and burns it. The bottom holes allow air to dry in from the bottom to complete that burn as the material burns down to the bottom. It also works slightly as a venturi system as air is drawn up these walls towards these holes, creates a vacuum down here at the bottom holes and pull some of the smoke out a downward draw into the system and pull some of it into here helping mix some of the smoke With the air and will swirl it so it'll burn cleanly. The single air inlet hole is used to pull the smoke out of the bottom to reverse this process to put syn gas out of this stove outside into a generator. There is inner set of holes in the bottom of the stove pipe.This helps mix air between the walls.The air gets drawn up between the wall since the inner pipe is longer than the outer pipe which mixes fresh air and completes the secondary burn to make sure there's no smoke coming out of this pipe. This is gonna be the bio crude oil production system here which is basically another term for a creosote that you produce from syn gas production, otherwise known as gasification production. It's got just a single pipe rolling out of the backside of it which is connected to a creosote collection container. As this gas starts to cool, it's going to come up to here it's going to work its way up hill, as it does so the hydrogen inside of the gas will be the lightest of all the gas is traveling uphill and definitely make it over the top much of the creosote we built re drip down into the second collection container here. Now the rest of its gonna go up cross through the pipe here and come down to a condenser The reactor shown here is made of two of five gallon steel cans.I cut the top off of one and the bottom off of another and slid them over each other. So they make a really long slide seal over each other one pipe, as you can tell here, welded in. With an elbow, it's a one inch pipe coming out of the back of they're welded in with an elbow. The downward slope of the pipe force the smoke to release as much of this crude as it possibly can. Because it's actually wanting to go uphill, which would be easy to smoke not going to cool real quickly. by forcing it slightly downhill, we're forcing a lot of that heat energy out, making sure it's releasing a lot of that, let's call it creosote or bio crude. It also allows for the creosote to roll down the bottom of the pipe into a container. The gas moves through a reduction point which reduces the pressure.The gas gets refined and reduced slightly in volume through the system. Hydrogen, carbon monoxide and all the rest of the lighter gases are going to easily flow up this pipe through thermodynamic pressure. Now you've cooled a lot of that gas by running it downhill, trying to bring in into this lower container as much the second grade creosote as you can, or biocrude. Now by running it up hill again, you can really force all the heavy hydrocarbons and other elements inside of this to focus out of the hydrogen gas and the carbon monoxide. This is a downhill pipe that's going to go anti the direction of natural thermodynamic processes that'll help condense out or precipitate out some of the oils at a much faster rate than it would be if that pipe was going the natural thermodynamic flow direction.The first catch is going to be the heaviest and thickness of the current Crude oil. It goes down that pipe from a reduction point here into the secondary catch.This comes up the hill here at the lighter gases not yet condensed, rises across loses a lot of energy and now is once again restricted into a quarter inch copper gas pipe into a 5 gallon water tank with a 20 loop condenser coil inside . The pipe out of that tank runs into a one gallon pickle jar. The next pipe comes out of the top of the jar, we're not actually trying to put it down too far because you don't want to bubble and once it starts to fill with crude oil, you just want to grab them the lightest of the gases, the hydrogens and the nitrogen, carbon monoxides and others that are still left within this system you want to grab, grab that right off the top. Now it comes up this pipe here goes through the T and once again we have a secondary condenser that this goes through now it's about four or five loops going through there, comes out through there. And that's where the liquids gonna condense from this condenser that's where it's going to be caught. The liquid will be flowing, dropping the jug and the lighter Smoke will continue on now down the pipe. The result of the bio crude oil project collecting 4 grades of oil.So the next step of this project now is to put this all through the refinery, which will actually be connected inside the woodstove that made all of this. So in the end, what we'll have is all the liquid being produced the crude oil once again, flow back to the woodstove go through the refinery out the refinery tower, and on the other side, we'll have a high grade fuel to use in any engine. https://www.youtube.com/watch?v=M1imlOX2pGI
    • How to build your own DIY off grid / grid down Solar Power Back up system from scratch
      This project goes over the build of a Solar Power Grid Down Backup System to generate your own alternative power.A great way to utilize renewable energy as a backup source of power. Whatever may be the reason , may be to offset electricity bills or for self reliance to provide when the grid goes down, a solar backup system is simply a great way to provide alternative power to maintain a lifestyle of reasonable convenience. If the grid should go down, I can have a freezer, power lighting, pump water, maintain communications, use tools, and charge every little device I have from flashlights to kindles. This Off grid Solar Power System is composed of 5 components. Solar panels to generate the power, a charge controller to charge the batteries, the batteries to store the energy, the inverter to provide AC to the household items you wish to power. Also you need a Kilowatt meter. The kilowatt meter measures two things you have to know how much energy your devices draw at any given moment, and how much power they consume over time. Here we use 100 watt monocrystalline panels, a 40 amp MPPT charge controller, a 1000 watt pure sine wave inverter and to store the energy, 446 volt golf cart batteries totaling 470 amp hours. First you need to size your system by figuring out how many devices you are going to want to run at the same time. This will determine the size of your inverter, the inverters function is to take DC power from the batteries and converted to AC power for use with household appliances. If I have 1000 watt inverter, this means I can run up to 1000 watts worth of devices at the same time. Once you have evaluated every device that you feel that you are going to need, should the grid go down, you are gonna have a good idea of how much power you need to generate each day. The battery bank consists of four, six volt, Duracell SLIGC 125, golf cart batteries connected in series. Golf cart batteries are designed to deliver a lower amount of power over a longer period of time and then recharge quickly. When picking a spot to locate your panels, you have to consider that the sun will be lower towards the horizon in the winter, and closer to directly overhead in the summer. Building a system that actually tracks the sun would be best as the panels are always pointed directly at the sun. Also mount your panels as close as possible to the batteries. This is because the longer your wire run, the more energy is wasted due to resistance. You also need to select the proper gauge wire to transmit the power from the solar panels to the batteries. Between the panels and the batteries is the charge controller ,it controls the charge of the batteries and make sure that the batteries get the proper voltage that they need and that they don't get overcharged. Here we use an MPPT Solar Charge controller. If your solar panels are wired in series and connected to an MPPT charge controller, the voltage adds up ,thus giving us enough voltage to charge the batteries. An MPPT charge controller can charge your batteries nearly the entire time The sun is out. If your panels are far away and you want to save money and wiring, then the MPPT charge controller is way more efficient than PWM. The first step in making your solar system safe is making sure that there's an automatic and a manual way to disconnect power in each segment of the system. Starting right here at the battery box we have a 300 amp manual switch to kill the power from the batteries to the inverter as well as a 200 amp fuse that will blow automatically. Another component to the safety is the grounding. Grounding your system is quite easy to do. So get an eight foot grounding rod and drive it into the ground. Then pick up some copper grounding wire, some lugs and connect the frames have all the panels in any metal components in the system including the charge controller and the inverter.