How to build a simple and effective Multi Purpose Waste oil Aluminum Scrapping Foundry / Forge out of Scrap Metal

    This project goes over the build of a convertible waste oil powered aluminum foundry / forge made out of recycled materials. Waste oil burning does get more than hot enough to melt down aluminum, which has a melting point of about 660.3 degree celsius.

    The materials you need for this project are old 10 gallon propane tank for the foundry, air compressor tank for the waste oil burner, blower from a car , three eighth inch hose and a brake line for feeding waste oil from a bucket, 12V marine battery for powering the blower.

    We take a car heater blower and house them inside an old tin can for the air intake. This is soldered to soup can and one and quarter inch schedule 80 pipe .This feeds air into the burner vessel.

    The fuel source which is the waste oil is drip fed from a five gallon jug with a brass gate valve. It is connected to the blower pipe through a three eighth inch hose and a metal brake line.

    The waste oil burner is from an old air compressor tank .It has a two inch cap on the top where we start the ignition and light the system. The pipe from the blower goes half an inch into the burner at an angle. This generates a cyclone vortex effect . We want to make sure that the oil and air are very well mixed together. In order to sustain combustion on something that’s so difficult to ignite like waste oil, we have to have a source of heat so it can actually atomize, turn into a vapor where it will burn very easily and very effectively.

    The outlet from the burner is connected to the foundry propane tank through a three inch piece of axle welded with a rotating coupling piece. This can be rotated independently so that the foundry can be rotated to a forge mode with the help of a lever.

    We mark and cut the top of the propane tank that essentially forms the body of our foundry. Next, we are going to need to put a lining on the inside , probably about two and a quarter inches thick. This acts as an insulator. Here we use a 50% mix of plaster of paris and play sand. The propane tank is filled with the mix and the air compressor is submerged in the center to form a mould. We let the tank sit for 24 hours to cure before we remove the air compressor out of it.

    Next step is to create the hole into the side of tank that will be the outlet of our waste oil burner. The hole is cut at a height so that the the aluminum wont run down and back flow into the oil burner tank. We place a three inch axle through the hole that is welded to rotating coupling . This coupling attaches to the outlet of the oil burner.

    One the other side of the propane tank ,we add a small lever system with a latch to manually put the foundry into a forge mode.
    A one inch water pipe is connected to the tank .Inside of that one inch water pipe is this bit of one inch shaft with a hole drilled in to accept a three eighths inch bolt. A rebar with a latch mechanism is welded vertically to this pipe. The latch is pulled to pulled and the foundry is rotated into forge mode.

    The foundry sits on a cradle during the forge mode .The cradle is made out of two inch flat bar. The frame is constructed from one and a half inch by one and a half inch angle iron that I had laying around.

    To start the system , we use a little piece of rag cloth and poke it down into the inlet of the ignition port of the oil burner. We apply a little waste motor oil and start the ignition. Once the flame begins , we apply power to our blower motor by connecting it to the 12V battery.



    RECENT POSTS YOU MIGHT LIKE
    • How to Generate Alternative Offgrid Power by building a Homemade Waterwheel Hydro Electric System
      This project goes into the build of a homemade alternative offgrid power generation system using a water wheel and flowing water source like a stream or creek. In order to catch the water from your spring or creek , the first step is to build a small dam. This enables us to produce maximum power from the running water wheel . First, We use a 4 inch pipe to divert the water before starting the construction of the dam. With a solid concrete foundation ,we aim to make a 42 inch dam with 30 inch of head . A six inch 36 inches long PVC drain pipe is installed on the high water side .The dam is constructed using four layer of hollow blocks and quickrete blended mason mix .Try raising the water higher to see how much higher it needs to go before it overflow through the sides. The dam board gates made of deck boards are installed in the middle .The back board and the front boards are spaced apart an inch and three quarters. The dam stop gate made of plywood with dimensions of one and half is inserted between the boards . To get a tight seal a half inch rubber tube is stuffed between these boards. With a 13 and half inch treated plywood and couple of 2X6 plywood side boards, the flume is built. The side boards are glued to the plywood base using adhesive sealant and screwed with exterior grade screws. To resist twisting and to keep the width of the plywood steady , four cross spacers are installed on the flume board. To divert the water without having to drain the dam, we make a small trap door in the flume near the opening . The trap door is made seven inches back from the face of the dam. The door is supported by a flange around the back and a stainless steel hinge. The flume is installed on the creek with the help of rebars and supporting deck boards. The rebars are attached to the boards using u-bolts and drill bit. Three more subsequent flumes are attached to each other. The gap between the flumes are sealed with poly foam caulk rope. The waterwheel is made out of a section of 55 gallon HDPE drum . The blades are made of 4 inch PVC drain pipe. The blades are curved so that it retains most of the water making it more energy efficient. 24 blades are attached to the drum using 16th by half aluminum angle pieces. A three quarter inch jack shaft from an old go-kart is used as the drive shaft. This is supported at both ends of the wheel with a help of pillow block bearings. Two 28 inch Circular end pieces made of plywood is bolted along both sides of the barrel using a 6 ten inch long half by thirteen carriage bolts to make the wheel build complete. Two square collar blocks are mounted on to shaft to center them. The holes are larger than the shaft so that the wheel can be adjusted to get the runouts reduced.To center the waterwheel and to adjust the runout of the center shaft , we use four blocks and adjustment bolts around the center block like a four jaw chuck . To install the water wheel securely, a support structure made of 2x4 boards are installed near the end of the flume. The water wheel is secured on these support boards with the help of couple of swivel block bearings. We use an adjustable Unistrut to mount the bearings,sprockets and the motor. This can be adjusted for chain tension as well. The Unistrut will stand vertically on top of the cross support that is under the flume.The Unistrut's are mounted onto the wheel on both the sides with help of bearings and T-nuts. A Number 35 sprocket with 72 tooth is mounted onto the center wheel shaft. This sprocket is connected to a half shaft with 11 tooth sprocket with the help of a size 35 go kart roller chain. A Permanent Magnet Brushed DC motor mounted on 2x4 board is further connected to this shaft via another sprocket. This gear system has a ratio of 30.86:1 Using unistruct angled brackets, the wheel is mounted onto the support board near the flume. The wheel is positioned near the flume in such a way that the water where it meets the wheel is exactly at the top. The charging system consists of a 12V DC emergency standby battery, MPPT charge controller, 300W sine wave inverter . The connection from the water wheel DC motor goes to the charge controller.The charge controller is also connected to the battery. Finally the inverter is connected to the battery which is further connected to a load. To make this charging system secure, make sure to make fuse connection between the components. All these components are mounted on a temporary wooden board. https://www.youtube.com/playlist?list=PLDda5L4aJUB-IuU3SWstKewFvzfv3wJGI
    • DIY Video: How to build a really efficient Portable Multi Purpose Ammo Box Wood Stove
      This project goes into the build of an efficient portable ammo can wood stove that can warm your space, act as a cooking stove, baking oven and an alternative for ground fires at camp sites. This ammo stove is compact and doesn't take up additional storage . All the basic components used in this stove are modular and can be stored inside the stove when not in use. These components are easily available in your local hardware store. The basic components needed to build this stove are as follows. The ammo box called the "fat 50 "is purchased from an army surplus store for $30 , the titanium stove pipe for $100 , the metal for the control dial and the door is salvaged from old barbecues. Rest of the basic tools needed are grinder, blow torch, hack saw ,rivet gun and a drill press. Not only you can use wood logs, paper, twigs but it also runs on wood pellets. The system has a gravity fed hopper that feeds the pellets intermittently for consistent heat over a longer period of time. For maximizing the burn, a divided combustion chamber is used. This forces the burn to go around a sealed baffle before it exits out the stove pipe providing less smoke and retaining more heat. A thick steel plate is used as a cook top which is rescued from an old barbeque . This plate absorbs the heat for cooking and is removable thereby protecting the stove top. Additional feature is a baking oven underneath the stove. The first step to build is simply removing the lid of the ammo can stove which just slides of the hinges. Remove the rubber gasket on the back side of the lid using a plier . This rubber gasket is replaced using 3/8th inch stove rope. This provides heat resistant seal from smoke. Remove the handle by drilling along the spot welds on the sides of the handle just enough to weaken them and pull it using a screwdriver . Two holes of three inches are drilled at the top surface of the stove . These are done to fit in the titanium stove pipe and for the gravity fed hopper system. We use a three inch propane fuel cylinder tube to make a pipe collar as a guide to trace out the holes. These pipe collars acts as hopper support for gravity fed pellet mechanism and for securing the stove pipe. The hole for the first pipe is about five and half inches away from the door hinge and the second one , one and half inches away. The holes are then cut using a jigsaw. The flanges in the stove pipe collars are made by securing them against a wooden fixture and bent them using a hammer. The edges are heated with a torch to anneal the metal for hardening. Before inserting the stove collars into the lid, the metal sheet inside the lid was removed. Using fiber glass cloth, a smoke seal is made around the collars. The collars are then inserted and the metal sheet is reinstated with help of some stainless steel rivets. A adjustable damper is installed inside one of the collars .These damper provide control to both burning speed and fire intensity. Also the damper in a closed state also acts a base for a steamer or a boiler. The damper is made using a thin steel cut out of a disc , the size of the inside pipe diameter. The shaft from a barbeque skewer is inserted along slots drilled in the disc holding them underneath the collar. Inside the combustion chamber ,we have two dividers installed. One divides the combustion chamber and the bottom one separates the oven from the stove . The top divider acts as an inner wall . The combustion has to travel around the corner and then go outside through the stove pipe at the end. This collects more heat and has less smoke build up inside. The side door openings are four inches high and three and three eighth inches wide. The door is made out of thick steel plate which was salvaged from an old barbeque. The door has three holes for the air intake and it is supported by a regular door hinge. A small circle metal piece at the front regulates the amount of flow that goes into the stove. A secondary burn system is introduced inside the stove so that the air coming into the upper part of the combustion chamber where all the smokes ascends gets reignited . This drastically improves the efficiency of the stove. Here we use couple of half inch black iron pipe that is connected with 2 90 degree elbow and an end cap. Holes are drilled on the pipe so that the fresh air is introduced into the chamber. A hole at the side of the stove is made the air intake. The pipe is inserted into the chamber and secured in place using a coupling and a spacer. A 3 X 4 inch duct adapter is used as a funnel for the gravity fed hopper system. To make this efficient , we add a small cage made of door basket inside the chamber so that all the pellets wont drop suddenly to the bottom. The cage is made from the metal rods from the basket. The rods are spaced 8mm apart and put straps across both sides and secured it using rivets. To prevent the overflow of pellets inside the cage, a two and half inch tailpipe is placed at a specific distance below the hopper. This helps the pellet build up in the cage but not overflow. Now there is a sustained release of pellets at all time for a consistent burn. Stainless steel tent stakes are placed at the bottom of the stove riveted to a metal plate. This prevents the bottom from burning out and also improves air flow. Also acts as ash collector. To use this stove as a light source, we make a small window out of half mm natural mica glass. We use a fiberglass cloth to form a seal around window. It is held by green painters tape. After positioning the glass, spacers are added around the edge . These metal strips allow for the mica to expand and contract. Another metal frame is used to hold all these in place. The portable stove pipe is made out of titanium rolls. The titanium prevents corrosion and also distributes the heat efficiently. To make a long cylinder without denting the foil, unroll the film across the ground, roll it small enough to get the clips on ,spacing them evenly along the length of the pipe. https://www.youtube.com/watch?v=t3XOLLg8wn0 https://www.youtube.com/watch?v=CskimuvL4ZI https://www.youtube.com/watch?v=TsHSfZ-nwws
    • How to build a simple Homemade PVC Off grid River Pump to pump water from a river or creek
      This project goes over the build of a river pump that can be used to pump water from a nearby river or creek anywhere you want without any external power.It works off of a circular tube, gulping air and water as it rotates. It works by harnessing the flow of the river and creating air pressure to push the water further.It pushes water out from the river and up through your hose system, which you can direct where needed. To use a river pump, all you need is a nearby river or creek that has flowing water and a location that is deep enough to support your river pump. Here are the parts needed for this water pump: A 3 inch to 4inch reducer A 4 inch to 6 inch reducer 40 foot ,3/8 inch tubing 3 inch socket to thread /cap Garden hose adapter Quick release couplings Six,four,two inch pipes Take your angle grinder and cut them to four pieces.Connect the pieces together using a PVC cement solvent and make it into a cone that steps down as it goes. A window screen is used as a shield on the back.So this design is supposed to be rather streamlined in order to keep debris and stuff from getting caught as the pump works The cap at the end of the cone is attached to the swivel piece. It needs to be able to swivel freely on top of this. The hose tightens into this metal swivel piece and gets locked down. Next is building fan blades for the front of this pump to spin it.Cut the PVC into 4 equal blades that is 8 inches tall. Bolt the swivel piece along with the blade we have just cut. Water comes flowing in and hits the blades that is attached to the rotating swivel, makes it move and rotate and then hits the next one in line. The end piece is attached to the the PVC cone that we made earlier.Next step is getting our 40 foot hose tubing to get inside the pipe and attach to the swivel end. Next step is wrapping the 40 foot hose around the pump .We need to wrap the hose in such a way once the water hits the swivel end,the hose has got to pick up water. The Garden Hose is connected to the swivel end of the pump.Place the system along the direction the flow of the river or creek.