DIY Video :How to build a Wood Stove that runs a generator, produces gasoline,runs a fridge and act as a water heater at the same time


    This is a wood powered gasifier stove that produces gasoline runs your generator, runs your propane hot water heater, heats hot water for you all off the grid. A simple design of a mini gasifying woodstove prototype here you’ve got some open latches, open up the door, the doors got the baton handle so it naturally stops on the downfall

    Inside the firebox, I’ve got a gasification style system built in there.One of the key things about a gasifying woodstove is that not only can I run it in a typical gasification wood stove manner, heat my home. But if I reverse that action with a fan and a draw system underneath the stove, with the ability to shut off the flow out the chimney pipe, and then draw down underneath the stove, reverse the action of the system, I can produce syn gas that can go outside and into a generator.

    This system has little latch up here at the top drops open so you can get in there work the material around.By actually pulling the little latch out and the bottom of the main gasifier inside of there to shut it and rotate it locks into place .It is actually a dump plate on the bottom of the main gasification chamber so that all the ash and all the coal that’s not burned can dump out of the system into a tray below.

    A secondary burn system with two layers of stove pipe, one smaller inner diameter stove pipe and one larger one is made for a better burn to take place with fresh air inlets right there in the chamber.

    The outer sleeve stops below the bottom allows air to travel up in between rise up to the pipe.There is a set of burner holes that makes sure to mix fresh oxygen that creates a swirl in there and helps burn any leftover syn gas in the production system. So there’s no smoke coming out of this in the end.

    Inside the woodstove is the inner chamber holds all your material, it gets hot and then creates an airdrop between this outer wall and the inner chamber wall that airdrop comes out these holes mixes fresh oxygen into the top of the system with the smoke and burns it. The bottom holes allow air to dry in from the bottom to complete that burn as the material burns down to the bottom. It also works slightly as a venturi system as air is drawn up these walls towards these holes, creates a vacuum down here at the bottom holes and pull some of the smoke out a downward draw into the system and pull some of it into here helping mix some of the smoke With the air and will swirl it so it’ll burn cleanly.

    The single air inlet hole is used to pull the smoke out of the bottom to reverse this process to put syn gas out of this stove outside into a generator.

    There is inner set of holes in the bottom of the stove pipe.This helps mix air between the walls.The air gets drawn up between the wall since the inner pipe is longer than the outer pipe which mixes fresh air and completes the secondary burn to make sure there’s no smoke coming out of this pipe.

    This is gonna be the bio crude oil production system here which is basically another term for a creosote that you produce from syn gas production, otherwise known as gasification production.
    It’s got just a single pipe rolling out of the backside of it which is connected to a creosote collection container.

    As this gas starts to cool, it’s going to come up to here it’s going to work its way up hill, as it does so the hydrogen inside of the gas will be the lightest of all the gas is traveling uphill and definitely make it over the top much of the creosote we built re drip down into the second collection container here.
    Now the rest of its gonna go up cross through the pipe here and come down to a condenser


    The reactor shown here is made of two of five gallon steel cans.I cut the top off of one and the bottom off of another and slid them over each other. So they make a really long slide seal over each other one pipe, as you can tell here, welded in. With an elbow, it’s a one inch pipe coming out of the back of they’re welded in with an elbow.

    The downward slope of the pipe force the smoke to release as much of this crude as it possibly can. Because it’s actually wanting to go uphill, which would be easy to smoke not going to cool real quickly. by forcing it slightly downhill, we’re forcing a lot of that heat energy out, making sure it’s releasing a lot of that, let’s call it creosote or bio crude. It also allows for the creosote to roll down the bottom of the pipe into a container.

    The gas moves through a reduction point which reduces the pressure.The gas gets refined and reduced slightly in volume through the system.

    Hydrogen, carbon monoxide and all the rest of the lighter gases are going to easily flow up this pipe through thermodynamic pressure. Now you’ve cooled a lot of that gas by running it downhill, trying to bring in into this lower container as much the second grade creosote as you can, or biocrude. Now by running it up hill again, you can really force all the heavy hydrocarbons and other elements inside of this to focus out of the hydrogen gas and the carbon monoxide.

    This is a downhill pipe that’s going to go anti the direction of natural thermodynamic processes that’ll help condense out or precipitate out some of the oils at a much faster rate than it would be if that pipe was going the natural thermodynamic flow direction.The first catch is going to be the heaviest and thickness of the current Crude oil.

    It goes down that pipe from a reduction point here into the secondary catch.This comes up the hill here at the lighter gases not yet condensed, rises across loses a lot of energy and now is once again restricted into a quarter inch copper gas pipe into a 5 gallon water tank with a 20 loop condenser coil inside .

    The pipe out of that tank runs into a one gallon pickle jar. The next pipe comes out of the top of the jar, we’re not actually trying to put it down too far because you don’t want to bubble and once it starts to fill with crude oil, you just want to grab them the lightest of the gases, the hydrogens and the nitrogen, carbon monoxides and others that are still left within this system you want to grab, grab that right off the top.

    Now it comes up this pipe here goes through the T and once again we have a secondary condenser that this goes through now it’s about four or five loops going through there, comes out through there. And that’s where the liquids gonna condense from this condenser that’s where it’s going to be caught. The liquid will be flowing, dropping the jug and the lighter Smoke will continue on now down the pipe.

    The result of the bio crude oil project collecting 4 grades of oil.So the next step of this project now is to put this all through the refinery, which will actually be connected inside the woodstove that made all of this.

    So in the end, what we’ll have is all the liquid being produced the crude oil once again, flow back to the woodstove go through the refinery out the refinery tower, and on the other side, we’ll have a high grade fuel to use in any engine.



    RECENT POSTS YOU MIGHT LIKE
    • How to build a Simple,Effective Metal Melting Furnace using Old Steel Container and Ceiling Fan parts. No welding required

      This video series shows the build of a homemade cheap metal melting furnace.No welds were required to make this furnace.An old steel container was used for the body of the furnace.Masking tapes was used to provide a visual guide for cutting the furnace with an angle grinder.The container was 13 inch from the bottom.High temperature castable refractory and ceramic insulation were used in order to reduce propane fuel use and to allow for the possibility of melting copper alloys. Most of the materials, besides the ceramic insulation and castable refractory, were salvaged for this build.

      Watch the DIY Homemade Metal Melting Furnace build

    • DIY Video:How To Turn Your Old Fan Into An Airconditioner AC for cheap.
      This project shows you how can take an old table fan and convert it into a simple ,cheap and easy to make homemade AC . The materials needed for the this project are a table fan, 75 gallon per hour fountain pump with valve to control the water flow, multi purpose zip ties ,two 3/8th inch transparent PVC Pipe tube, 15 foot quarter inch copper tube,two hose clamps. Unhook the locks if any and remove the screen of the fan. Take the copper coil and wind them across the rims of the fan .Secure them tight on the screen using multi purpose ties. Add the screen back to the fan body and then adjust the two ends of the copper coil by bending them to face the back of the fan and secure them using ties. Two 3/8 transparent vinyl PVC pipes are connected to the copper tube ends using hose clamps. We attach the fountain pump to the end of the vinyl PVC tube that goes straight into our cooler. The recirculated water coming from the other end of the tube goes straight back into the cooler bag. The cooler bag is filled with ice packs and water. The water pump is submerged into the bottom of the bag with ice and water over it. The water which is pumped with the help of the fountain pump gets recycled through the vinyl and the copper pipe and moves back into the bag, so you dont need to add more water .Both the pump and fan can be connected to solar generator in case if you want to make the system portable . https://www.youtube.com/watch?v=5NuvzWaBulw
    • DIY Video : How to Turn old unused ceiling fans into a useful energy producer by building a Wind Turbine out of it
      A Beginner tutorial on how to make a wind turbine ceiling fan.So out of the box, we have the main part here, which has the motor in it.Keep up with all the blades if you can. You can use this for the furrow on the back the way it pushes around to keep the turbine from standing in a very aggressive wind it pushes it out of the way First part is just getting the motor outside of this casing. And you want to be careful because these wires are fragile, and you don't want to tear those loose by any means.So mainly, the tools that you'll need is just a screwdriver, maybe a flathead screwdriver and a hammer eventually. Take the top part of the ceiling fan off, this is the part that's next to the ceiling.Disconnect the wires don't cut them. There's a nut here with a washer that holds this plate.And we don't want this plate. So we need to take that off. However, we do want the washers here. Take this casing apart, and inside you'll see that copper coils that actually power the fan. The next step is finding the highest arm reading of these four wires that is coming out of this motor.Pull that higest ohm reading wires through the center pole to the other side. Insert a metal banding used for attaching the magnets around the stator. Put the magnets inside the fan housing to achieve a voltage reading.Add a cardboard spacer in there so that the magnets are aligned with the stator. The blades are made of 4 inch PVC.You can find templates online for the blades.Put the outline of the blades from the paper onto the PVC and then cut it out with a jigsaw. And then once you cut it out with a jigsaw, all you have to do is get a little Sander out, you can use a hand Sander to smooth the edges off. Connect the blades to the faceplate of the old ceiling fan. Next step is to take an inch galvanised pipe that forms the body of the turbine. A 40 inch piece will slide down into the conduit of the mounting system for your turbine.A 30 inch piece on the back,This is going to be angled up into the wind to keep the blades in the wind a little better. One Inch PVC is slid down the end of the 30 inch pipe and attach the tail piece on there which is made of fan blade The wires from the fan is passed through the pipe and just zip tie them down.Cut the PVC in half to a 45 degree elbow ,cut a line down through this PVC, we're gonna split it basically and drill some holes in it and attach the ceiling fan blade. Attach the fan to the galvanized pipe with the help of an extension that was previously saved during our dismantling of the ceiling fan.Use JB weld on the inside of that. And I put this bolt through this part and put a tightening screw on it, they're kind of digs into the metal. Connect the two leads from the fan to a bell wire, solder these two together, wrap it up with some electrical tape and kind of zip tie to the top so that it will stay in place.At the base end of the wire,connect it with a diode bridge rectifier which is further connected to our battery. Regarding connecting the rectifier,it doesnt matter how you solder them together,just as long as they are separate and not connecting and shorting out. But you want to put this at the base of the wire at the very end so that you can put this inside of your battery box and hook it up to your battery. https://www.youtube.com/watch?v=sr9ZMbF3Zqk&list=PL68TKRSLgXzQqZa5WzMNFwmYKS4b4KPcA