DIY Video : How to Turn old unused ceiling fans into a useful energy producer by building a Wind Turbine out of it


    A Beginner tutorial on how to make a wind turbine ceiling fan.So out of the box, we have the main part here, which has the motor in it.Keep up with all the blades if you can. You can use this for the furrow on the back the way it pushes around to keep the turbine from standing in a very aggressive wind it pushes it out of the way

    First part is just getting the motor outside of this casing. And you want to be careful because these wires are fragile, and you don’t want to tear those loose by any means.So mainly, the tools that you’ll need is just a screwdriver, maybe a flathead screwdriver and a hammer eventually.

    Take the top part of the ceiling fan off, this is the part that’s next to the ceiling.Disconnect the wires don’t cut them.

    There’s a nut here with a washer that holds this plate.And we don’t want this plate. So we need to take that off. However, we do want the washers here.


    Take this casing apart, and inside you’ll see that copper coils that actually power the fan.

    The next step is finding the highest arm reading of these four wires that is coming out of this motor.Pull that higest ohm reading wires through the center pole to the other side.

    Insert a metal banding used for attaching the magnets around the stator.

    Put the magnets inside the fan housing to achieve a voltage reading.Add a cardboard spacer in there so that the magnets are aligned with the stator.

    The blades are made of 4 inch PVC.You can find templates online for the blades.Put the outline of the blades from the paper onto the PVC and then cut it out with a jigsaw. And then once you cut it out with a jigsaw, all you have to do is get a little Sander out, you can use a hand Sander to smooth the edges off.

    Connect the blades to the faceplate of the old ceiling fan.

    Next step is to take an inch galvanised pipe that forms the body of the turbine. A 40 inch piece will slide down into the conduit of the mounting system for your turbine.A 30 inch piece on the back,This is going to be angled up into the wind to keep the blades in the wind a little better.

    One Inch PVC is slid down the end of the 30 inch pipe and attach the tail piece on there which is made of fan blade

    The wires from the fan is passed through the pipe and just zip tie them down.Cut the PVC in half to a 45 degree elbow ,cut a line down through this PVC, we’re gonna split it basically and drill some holes in it and attach the ceiling fan blade.

    Attach the fan to the galvanized pipe with the help of an extension that was previously saved during our dismantling of the ceiling fan.Use JB weld on the inside of that. And I put this bolt through this part and put a tightening screw on it, they’re kind of digs into the metal.

    Connect the two leads from the fan to a bell wire, solder these two together, wrap it up with some electrical tape and kind of zip tie to the top so that it will stay in place.At the base end of the wire,connect it with a diode bridge rectifier which is further connected to our battery.

    Regarding connecting the rectifier,it doesnt matter how you solder them together,just as long as they are separate and not connecting and shorting out.

    But you want to put this at the base of the wire at the very end so that you can put this inside of your battery box and hook it up to your battery.



    RECENT POSTS YOU MIGHT LIKE
    • DIY Video: How to build an Efficient Cold Water Powered Radiant Air Cooler that uses no electricity. Turns Cold Water into Cold Air!!
      This video shows the build of a simple Homemade Water-Chilled" Radiant Air Cooler! w/motor speed control!.Made with an 8x8 "water-to-air" heat exchanger, small water pump and a 7" fan. This new design cools air by pumping ice-water (or cold water) thru a water-to-air heat exchanger (copper/aluminum radiator) and then drawing the warm air thru the unit using a 12v radiator fan. the air that is produced is cooled dramatically with no increase in humidity and no need to vent any part of the unit to the outside. the heat is essentially captured into the cold water and the "cold" in the water is released into the room as cold air.

      Watch the DIY Homemade Offgrid Radiant Air Cooler Build Video

    • How to build a Homemade Super Efficient Portable Solar Generator
      This project goes over the build of a Homemade medium sized and moderately priced portable solar power generator that is designed to be powered by 100W Polycrystalline Solar Panel. The case for this portable system is from Plano sportsman, quite sturdy and rugged that a typical container. Costs about $25 . It has a nice top with handles that latch it down. On the back of the system, we have two pin SAE port that allows the energy from the solar panel to come into the system. It directly goes into a 30A solar charge controller. The negative from the charge controller is connected to the negative of the batteries. The positive is connected via a switch to positive of the battery. The negatives and positives of the batteries are connected to each other. The negative of the inverter is connected to the negative of the battery. The positive is connected to a battery switch off circuit that is further connected to battery positive through a switch. The USB ports,12V DC outlet, DC meter all are connected to the respective terminals of the batteries. To connect to the AC outlet from the inverter, we take a 3 wire extension cord which can be bought from the local hardware store . The negative end of this wire is connected to the negative of the shallow box AC outlet and the positive is connected via an 15A inline fuse and a current transformer. The ammeter is connected to current transformer and the 110V outlet. On the front of the system, we have the accessory ports including a 12V power indicator , 2 USB ports with 5V one amp and 5V 2.1amp, 12V outlet, AC Voltmeter and ammeter. Amp meter tells how many amps we drawing out of the system using various appliances. This can help us understand how much solar power is being generated during the day versus solar power being utilized from the system. The whole system is turned on a 12V master key switch that activates inverter, case temperature sensor, cooling fans , AC power outlets. We install a key and power up the AC side of the system. There is two fans on the back that push air in and draw air out of the case to keep the AC DC inverter cool. Inside we have a deck tray made from backboard material available at Home Depot. We have installed a 400W pure sine wave inverter, a 30A MPPT solar charge controller and a 12V emergency LED light on them, also has four vents that allow air to circulate through the top portion of the case as well as through the bottom. The vents keep the batteries cool and allow any off-gas build up from the batteries to pass it through. Here the inverter has a built in automatic shutdown feature that ensures that the batteries are not discharged to a significant level. So it is safely connected to the batteries. Once the deck tray is taken apart, we have 2 55AH AGM sealed batteries that are wired in parallel to a 2 AWG cables to transfer the power back and forth between the batteries. These type of batteries require less maintenance. Also installed a wooden frame with exact dimension of inside of the case to keep the batteries in place and keep them from moving around. To protect all the components we have fuses ranging from ANL 50amp fuses between the inverter and the battery , inline 30amp fuse between the solar charge controller and the batteries. To attach jumper cables we have an option for external heavy duty battery terminals. To connect to an AC float charger we have added a SAE 2 pin port. https://www.youtube.com/watch?v=offgcMwuTGw&list=PLE0oc91st1znXrnczHySumH34-UJP3N2S
    • How to build a Simple Homemade Bandsaw Mill from Old Car Wheels
      This project goes over the build of a simple Bandsaw from old car wheels .Car wheels are big and heavy, but in many ways, they are ideal for bandsaws. They are available everywhere cheaply. They have a rubber tire for the blade to sit on, and they have excellent bearings. Take apart the brakes, the backplate , bearings and the stub axle out of the housing. Weld the stub axle onto an off cut of scaffolding. So we now have two wheels, spinning on the ends of two straight lengths of steel. We take some scrap angle iron pieces and make a rectangular frame for the mill. This form as the base of our mill. In order to make the sliding mechanism, we take a scrap pipe and try to fit it onto a square iron pipe so it can slide in and out smoothly. This will be used for all adjustments. This is welded onto the frame. A Steel plate is welded onto the sliding bars. This is for the engine to sit on. The engine will drive one of the car wheels We mount the 11 HP Petrol Engine to steel plate and the tire is connected directly to the engine shaft through a drive belt. The drive wheel is bolted on to the frame ,also added a lever for the engine mount which will act as a sort of clutch, tightening and slackening the belt when necessary. We add two more pipes on the bottom of the frame and slid them to the support platform of the second wheel made from the same square box iron and some short sections which is part of the blade guide. The second wheel has to be adjustable in a few different directions and has to be lined up with the first wheel so the blade stays on them both without running off the tires. To adjust the tension on the blade by moving the wheel away from the first one, we use a bottle screw. The blade guides are made from cheap bearings. They needs to be adjustable so that the saw can cope with logs of different sizes. The blade guides help keep the blade straight as it goes through the log and also stops the plate being pushed off wheels The band saw has to go up and down so that it can cut planks from a log. We make a simple frame to hold it. It has to fit inside vertical pieces of angle iron on the saw. The support frame is bolted onto to the saw by using a bracket which grip the uprights. Couple of barn door pulleys are bolted onto the top of the support frame and the mill frame. A trailer winch is bolted on to the middle of the support frame. Using a 3mm wire and winch-pulley system, we can move the wheel frame up and down. Two short pipes are added at the front and these hold up a guard which can be taken off when we need to get at the belt or the blade. If the blade snaps, the side guards should make sure that it heads down towards the ground and not up to the ceiling. The saw is stationary and the log is moved through it using dolly trailers or rails. https://www.youtube.com/playlist?list=PL3_dJayH6e6ibBd5sA6WgXO99zf2zBsUe