DIY Video: Generate power from slow moving streams and rivers that have no speed or head by building a Hydrofoil Hydroelectric Generator

    This NEW Hydroelectric generator design uses a Hydrofoil and a simple flywheel to create hydroelectric power from otherwise unusable water flows. This design will produce power from slow moving streams and rivers that have no speed or head, it also allows us to produce power without making a dam. This will open up a whole new product line for hydrofoil powered slow water flow based hydroelectric generators.

    Watch the DIY Hydrofoil Hydroelectric Generator  Build Video

    • How to build a Simple Alternative Power Dual Refrigeration System that uses no electricity
      This project goes over the conversion of an old three way refrigerator unit from an RV into an alternative power offgrid Dual refrigeration system that uses no electric power. This can be really useful in case of a power outage or SHTF situation when you need to keep your food or vegetables fresh. The first step is to strip the fittings on the back side of the fridge , remove all the ammonia system ,clean the inside of it . Here we are incorporating more than one way to use this water for cooling refrigeration system to make it efficient .We will be using cooling effect by brining down the water temperature to cool the box , another way to cool the box is by installing an evaporative system. We take the two pipes coming from the water source around the edges of the box and put some cotton sheets around the sides and let the water cascade down the sheet creating an evaporative effect. We have an inverter and a battery attached to the fridge that is hooked up to a 25W solar panel .The wire from the inverter is connected to 8W Electric Fish tank pump .The water coming from the pump goes underneath and up inside to the lid of the fridge to the condenser coils and then comes back around back into the water source like well or water tank. The full system is recirculated back into the original storage tank where the water is coming from. We keep the fridge in a chest freezer style instead of an upright style. Inside the fridge, we have incorporated 2 poly tubing coils attached to an old heat sink that was already in the fridge. The 100ft coils are attached to the top of the fridge. The cold from that coils will drop down to the rest of the fridge. Next step is to incorporate the evaporative cooling part of the refrigeration system. We start by installing aluminum U channels across all the edges of the fridge. The U channel will hold cotton material inside of them. The water coming out of the outputs from our coils rushes into the channel which is going to wick out into the cloth and run down the cloth with gravity, giving us our evaporative cooling effect . On the corners, we have the U channels interconnected to each other through a bent garden hose in such a way that any extra water flow in the channel can transfer to the the channel that is next. The cotton sheets are stretched around the box and tuck it down into the channels all the way around under the wires such that the wires will hold the channels up and hold the sheet up inside the channel. To even the flow of the water ,we install a tee. Now the water coming from both sides of the channel can leak into the sheet. Also make sure you have an air gap between the sheet and the refrigerator box.
    • How to Dig a Shallow Well from Start to Finish for offgrid homesteading
      This project goes over how you can dig your own shallow well using simple tools that you can get from your local garden store. The materials you need to dig and install a well are as follows. A customized Seymour AUA2 Post Auger to dig the hole. A Shovel is used to move the pea gravel and dirt out of the way. A Four inch casing PVC pipe that is going into the hole that is dug and this is going to hold the water until you need it. One and one fourth inch threaded adapter. This connects the bottom of the casing pipe to the foot valve. The foot valve is one and one quarter inch. This valve allows the water to come in and not go out. This helps to keep the pump primed. A water well pump pipe which is basically a one and one quarter inch PVC pipe. This will pull the water from the bottom of the well bringing it to your pump. The length of this pipe is going to be determined by how deep your well is. It should be at least a foot shorter than the depth of your well. You don't want this pipe sitting on the bottom because it would just be sitting in sediment and it will be clogging things up. A pitcher pump that has a one and one quarter inch threaded water inlet at the bottom. A closet flange. It makes mounting the pump to the top of your well four inch casing pipe very easy and it also helps keep things clean. Basically you would just set this inside you your four inch pipe, drill a hole out of the middle of a board, screw that to the top of this flange then mount your pump to the board that you have fastened to this. A one and one quarter inch threaded adapter. This will screw into the bottom of your pitcher pump and in turn, it will connect to the pipe bringing water to your pump from the bottom of the well. Teflon tape, PVC glue. Pea gravel - This will go down around the casing pipe of the well. The amount of pea gravel you need is determined by the depth of the well and water height. Quikcrete or aerated concrete to cap the top of the well. This prevents groundwater contamination and keeps stuff from finding a way to easily get into your well. To find the spot for the well, we use couple of coat hangers as dowsing roads. We take a drinking straw ,cut it in half and slide it over the coat hangers. This helps us in not using our hands or fingers influence while dowsing. Also it is easy to rotate the rods within the straws. The rods are kept parallel to the ground . If the rods cross each other , then mark the spot on the ground directly down the cross . This is the ideal spot for the well. The auger used for digging the hole for the well is modified from the default Seymour Post hole auger. We use a custom 5 foot 11 gauge one and half inch square tubing as the extension for the auger . The handle of the auger is a three foot three quarter inch pipe welded to a four inch 11 gauge square tubing. We start digging into the the spot that we have found earlier using the dowsing rods. Pay attention to the changes in the color of sand , because that can give you clues as whether you are getting closer to water. We extend the auger using the square bar tube once the auger handle is near the ground. Once you have hit wet clay, there is going to be suction around. We twist and pull at the same time to get the auger out of the hole in this situation. Next, we put the 20 foot PVC casing pipe into the hole . We cut slots using a reciprocating saw on the pipe one foot from the bottom of the well to the top of the water level to allow the water to flow into the well. Pea gravel is poured around the sides of the pipe all the way up to the slots . The remaining hole area around the pipe is packed with sand and clay. We seal the well by packing it around the sides with quickrete cement. This helps the water not to be able to run down into your well but around it. We lower the one and one quarter inch well pump pipe with the foot valve at the end into the PVC casing pipe. A four inch drain flange is secured on top of the casing pipe . A pitcher pump is then attached to top of the pipe. To prevent the pump from moving, it is bolted to the board where the flange is installed. To prime the well, we pour some water down through the pitcher pump. Pump out the dirty water until it is clean.
    • DIY Video : How to build a Thermal Vacuum Water Pump that needs no electricity and has no moving parts!
      This Video shows the build of a Solar Evacuated Thermal Vacuum Water Pump works by harnessing the energy of the sun in the day time and then uses the cold of night to create a vacuum in the system that is used to pump water. This is a working prototype of an idea on how to pump water from stagnant water sources cheaply using no moving part.By using the sun's energy to generate both a pressure and a vacuum cycle we create a very efficient water pump, that has only two simple moving parts. This pump was able to move one gallon every cycle to 8 feet high, by creating artificial day/night cycles the pump could move about 1 gallon every 30 minutes of sunlight, or about 12 to 20 gallons a day.

      Watch the DIY Homemade Thermal Vacuum Water Pump Build Video