DIY Video: How to build an Efficient Cold Water Powered Radiant Air Cooler that uses no electricity. Turns Cold Water into Cold Air!!

    • How to build a Offgrid Homemade Emergency Washing Machine that use no electricity.Also works as a Composter
      This project goes over the detail on how you can take an old 55 gallon plastic drum and turn that into a hand crank washing machine and a compost tumbler. The frameworks has uprights on the edges, holding up the barrel all the way down. The upright on the sides are 3 foot long 2 x 4. The base that it sits is 3 foot 2 X 4.Long brace that holds the two sides together is three foot eight inches long. You can take apart the whole framework by unscrewing the side rails and store the barrel for using them in an emergency situation. The barrel sits on a one inch hardwood dowel which is installed through one inch hole at the top of the upright. These barrels have a line in the middle of them so it is pretty easy to find the center by measuring across the line and then dividing it in half. The hand crank is made of PVC pipe with some screws to the end side of the barrel. The hand crank gives you something to grab onto if it gets very heavy so you can pull it back up and really move it around. It has a one foot by one foot door on the front .We use couple of cheap cabinet hinges to hold the door up when unloading the clothes. It also has a little S hook latch that locks it into place. A hole down in the middle of the barrel is for drainage. A small plug and a cap acts as a drain. The plug is put through the hole from inside and sealed with the help of PVC glue. Next step is to add agitators to our barrel . As you rotate the barrel, the clothes will roll over those agitators back and forth and get the clothes moving a lot better and help clean it. We add 3 PVC pipes inside the barrel that act as the agitators. You put clothes in through the top and add enough water just to cover the clothes, add any biodegradable liquid detergent and close the lid. Start moving the hand crank back and forth. This will agitate the clothes. The agitators slosh those clothes around, get them grinding against each other and that is going to clean all the dirt out of them. After about 15 minutes of agitation, we pull the drainage plug off the bottom and drain the water or recycle it by collecting them underneath a bucket and pour it around your plants and trees. As long as we are using biodegradable soap/detergent, the soap and the dirt that is in your clothes isn't going to hurt the plants. We put the plug back on, and fill the barrel with some clean water and agitate for another 15 minutes. This is the rinse cycle. Pull the plug, drain that water or use it on your plants. This setup can be also used a tumbling composter. Compost can be made of just about anything that was once alive .You can use leaves, grass clippings, garden waste, kitchen waste, chicken manure or any other waste material. Just dump all in there and turn the compost in there using our handle every couple of days for 2 weeks. We want to keep the compost aerated so that the microbes and bacteria that break down the compost can utilize the oxygen efficiently and help in decomposition. After 2 to 3 weeks, you probably have some pretty decent compost that you can use on your garden. Also through the drain hole, we can collect the residue compost tea which is high in nutrients. You can use that compost tea for plants that really need a good dose of nitrogen.
    • How to build a Large 2000W Portable Solar Power Generator at Home from scratch.
      The idea of a completely silent power generator that can still run large power loads, and never need gasoline is a really cool concept. This project goes over the build of a large 2000W Portable Solar Generator that can power appliances ranging from a table saw to charging your phone effortlessly. We need a large box to hold our basic components. Here we use a pelican 1620 protector case that is durable, dustproof and waterproof .This is going to be the case that we package everything into. It's got wheels on the bottom so you can roll it around ,also has heavy handles on either sides. The battery is a AGM glass mat ,coil would style, 12V optima deep cycle battery. A deep cycle battery just allows you to get a little bit deeper into the discharge before you are starting to shorten the life of that battery. This battery also has the ability to be mounted in any orientation . So it is safe whether the battery is on its side on its back or even upside down as long as we have it mounted securely so that nothing shorts against our terminals. The next major components for our build is the 2000W inverter from Krieger. This one has some large terminals on the back for our wiring. Also has a active fan here for ventilation. Also comes with a remote control switch. The 100W Solar Panel is from Renogy. It has the bus on the back for connecting in to your solar charger .It also comes with a 30A Solar Charge controller. This can run up to four of the 100 watt panels in a 12 volt system. The back of the solar panel comes pre wired with MC4 connectors, as well as a couple of MC4 pigtails. We use high quality 16 gauge speaker wire to extend the connection. These wires are highly flexible for portable use. To connect it to the MC4 pigtails we need to go ahead and strip the insulation off and use butt splice connectors to crimp them to the MC4 pigtails. In case you cant to charge the system with standard AC power ,we use a 1.5A Battery maintainer / Float or Trickle charger. This will be good for just keeping it topped off when it is in storage. Or if you just want to charge up your batteries and you really don't have a place to be setting the panels out. Next step is mounting components on the outside of the case . Before mounting any component, factor in how the internal components are going to placed inside the case. On one side of the case ,we are going to mount a small LED work lamp with toggle switch, a 12V gauge pod with 5V USB output, digital voltmeter,12V cigarette socket ,an AC input plug for using with the trickle charger, a 6pin solar panel trailer connector. These components are secured in place using a RTV silicone sealant. One the other side of the case , we are going to mount the inverter remote control switch, 350A high current plug which is used for jumper cables or to add high current loads, a GFCI AC outlet with a weatherproof cover. The GFCI outlet is connected to the inverter inside the case. We want to put the battery as close to the wheels as possible, because that will help keep the heaviest part down low when moving the case around either on the wheels or by carrying it. We place it snug into a corner of the case using battery mount and couple of pieces of 2X4. The inverter is placed inside the case in such a way that there is enough space for air ventilation and for tucking some of the wires underneath. The inverters are secured in place using mounting tabs and 10x24 machine screws. The PWM solar charge controller is also mounted in the same way near the solar panel connector input. The trickle charger / battery maintainer is placed as low into the back of the case .This is not something that will get very warm so we don't need to worry about heat dissipation or anything like that . We plug the power cord from the trickle charger into the AC input cord. Next step is the wiring. We start by connecting the power cables from the inverter to the battery. The positive and negative from the inverter is connected to the positive and negative of the battery respectively. To distribute power in our generator ,we use a six circuit fuse panel for the positives and a busbar for the grounds. We use two inexpensive battery cables to run the power to our distribution blocks as well as running the power to our high current quick connector. The positive red connection from the quick connector goes to the fuse panel and the black negative connector to the ground busbar. Both connections are further extended to connect to the positives and negatives of the battery respectively. The LED lights are connected to the 3 way connector switches. The switches are further connected to the power distribution fuse block. Similarly a single switch is connected to the USB outlet, voltmeter and the cigarette lighter ports in parallel. The positive from the switch is connected through a daisy chain mechanism to the three positives of the ports ,the negatives are similarly connected to our distribution block. At this point, we now have a power wire and a ground wire for every single one of our accessories connections . We bundle these wires and keep it neat and tidy using zip ties. Separate the positive wires from the negative wires, we are going to be rounding the negative wires to our ground busbar. After we have all of the ground wires connected, we can move on to the power wires on our distribution block. Each one of the blade connectors represents one fuse circuit. We connect the positive red wires from charge controller, battery trickle charger, usb ports,voltmeter,12V outlet to the fuse circuit. We are using a 30A fuse for the charge controller,12V socket, 20A for the LED work lights, 5A for the trickle charger.
    • How to build a Super Efficient Outdoor Wood Stove Heater from an Old Propane Bottle
      This project goes over the build of an efficient outdoor wood burning stove heater out of an old propane bottle and some scrap metal from the scrapyard. This stove has secondary burn system that helps in combustion of any unburned smoke or fume inside .Almost little to no smoke coming from the flue pipe. The first step is to make sure that the old propane tank is empty. We take the valve at the top by removing the valve protector cage. Fill the tank with water and let it sit for a few hours before we drain the tank and start cutting top and bottom. With the help of a hole saw cutter ,we cut 100mm four inch holes at the top and bottom of the tank . The top hole is for the flue pipe to sit in and the bottom hole is for cleaning the ashes out. We also remove the bottom stand too. Next, we cut a hole for the door for the stove. This is cut as high up to the top of the bottle . The door is made of chequered plate piece . We fit a rectangular pyrex dish glass piece in the middle of the chequered plate that can withstand high temperature with couple of steel bracket pieces. The glass on the door helps us to see how the secondary burn system is working inside the chamber. The door is attached to a frame through hinges. The flue outlet on the top the tank is attached through a flange piece with holes. The door handle is made of a socket wrench. The wrench is bolted to the plate and a small metal piece is welded onto to the frame to which the wrench is pulled to close the door A deflector plate made of small holes is installed inside the stove on the top . We drill 8mm holes around the top of tank and put dome bolts across them. The deflector pipe sits on these bolts. The deflector plate stop the unburned gases exiting out the flue outlet pipe. This encourages the flame that rises, pass through the deflector plate holes into the secondary burn chamber that helps in better combustion. The secondary burn system is made of stainless steel pipes .The air intake section is long enough to get the air coming in to get super heated and move into two sections filled with holes. Since not all gases from the wood combust from the primary air intake, the secondary burn pipe ensures that the air gets super heated before exiting the pre-drilled holes and helps burn the unburned gases rising from the fire before exiting the flue pipe. The secondary air intake pipe coming out of the firebox is welded on the top of the tank with a flange piece. The primary air intake pipe that goes under the door frame is made of a two inch coupler and threaded damper disc. A small metal piece is welded to the coupler with a hole in the middle. The damper disc screws in through the hole that allows us to close and open the intake .