DIY Video : How to Generate FREE POWER by building a Homemade Waterwheel Microhydro System from Start to Finish

    This Video Series shows step by step on How you can provide enough electricity for one house by building a Micro Hydro water wheel electric generator .Not only you will no longer dependent on the power grid, but you’ll have electricity when SHTF and more important: absolutely FREE.Unlike solar panels, a water wheel electric generator can produce electricity 24/7.Simply,the flowing, dropping water is spinning a wheel .The wheel shaft it’s connected to a simple coil generator that produces electricity. If you don’t need electricity you may adapt the water wheel to grind grain, to cut wood, strengthen iron or to sharpen tools. Anyway you choose to use it, a water wheel is an important installation when living off the grid or when SHTF.

    Watch the DIY  Waterwheel Micro hydro System Build Videos



    RECENT POSTS YOU MIGHT LIKE
    • How to build a Homemade Super Efficient Portable Solar Generator
      This project goes over the build of a Homemade medium sized and moderately priced portable solar power generator that is designed to be powered by 100W Polycrystalline Solar Panel. The case for this portable system is from Plano sportsman, quite sturdy and rugged that a typical container. Costs about $25 . It has a nice top with handles that latch it down. On the back of the system, we have two pin SAE port that allows the energy from the solar panel to come into the system. It directly goes into a 30A solar charge controller. The negative from the charge controller is connected to the negative of the batteries. The positive is connected via a switch to positive of the battery. The negatives and positives of the batteries are connected to each other. The negative of the inverter is connected to the negative of the battery. The positive is connected to a battery switch off circuit that is further connected to battery positive through a switch. The USB ports,12V DC outlet, DC meter all are connected to the respective terminals of the batteries. To connect to the AC outlet from the inverter, we take a 3 wire extension cord which can be bought from the local hardware store . The negative end of this wire is connected to the negative of the shallow box AC outlet and the positive is connected via an 15A inline fuse and a current transformer. The ammeter is connected to current transformer and the 110V outlet. On the front of the system, we have the accessory ports including a 12V power indicator , 2 USB ports with 5V one amp and 5V 2.1amp, 12V outlet, AC Voltmeter and ammeter. Amp meter tells how many amps we drawing out of the system using various appliances. This can help us understand how much solar power is being generated during the day versus solar power being utilized from the system. The whole system is turned on a 12V master key switch that activates inverter, case temperature sensor, cooling fans , AC power outlets. We install a key and power up the AC side of the system. There is two fans on the back that push air in and draw air out of the case to keep the AC DC inverter cool. Inside we have a deck tray made from backboard material available at Home Depot. We have installed a 400W pure sine wave inverter, a 30A MPPT solar charge controller and a 12V emergency LED light on them, also has four vents that allow air to circulate through the top portion of the case as well as through the bottom. The vents keep the batteries cool and allow any off-gas build up from the batteries to pass it through. Here the inverter has a built in automatic shutdown feature that ensures that the batteries are not discharged to a significant level. So it is safely connected to the batteries. Once the deck tray is taken apart, we have 2 55AH AGM sealed batteries that are wired in parallel to a 2 AWG cables to transfer the power back and forth between the batteries. These type of batteries require less maintenance. Also installed a wooden frame with exact dimension of inside of the case to keep the batteries in place and keep them from moving around. To protect all the components we have fuses ranging from ANL 50amp fuses between the inverter and the battery , inline 30amp fuse between the solar charge controller and the batteries. To attach jumper cables we have an option for external heavy duty battery terminals. To connect to an AC float charger we have added a SAE 2 pin port. https://www.youtube.com/watch?v=offgcMwuTGw&list=PLE0oc91st1znXrnczHySumH34-UJP3N2S
    • How to build a Portable 420 watt Solar Power Generator . Very Detailed Video Instructions,perfect for beginners
      This project goes over the build of a 240W Solar Generator made out of an ammo box.The box is large enough to hold a 240 watt deep cycle battery. There are some basic tools that you are going to need to build this generator.Number one tool, you're going to need a drill. If you don't have a drill, you can find one at Home Depot, you don't have to spend a lot of money.Next thing you're going to need is a screwdriver. Next, you're going to need wire cutter, a wire cutting and stripping tool. And it's also got a crimper on there. To drill the holes in the metal ammo box,you need a step up drill bit which can drill different sized holes, using all the same drill bit.You will need a pair of pliers which might be handy when you are cutting and manipulating wires and then basic wire cutters which also we have on the pliers. The next thing that you're going to need is the heart of the generator, which would be the battery. Now this is a rayovac deep cycle battery.I recommend that you use a V max deep cycle battery. The next thing you're going to need is a USB port. This is a two port device, it's got a one amp outlet and a 2.1 amp outlet.You're also going to need a 12 volt outlet. Faceplate,blade fuse holder,terminal connectors,switch,self tapping screws,14 gauge 17 amp black and red wires. We use a 3 prong switch,one of them gold in color which is the negative terminal and the other two positive.Purpose of the switch is to control your USB outlet. And it's what turns the USB outlet on and off. The positive terminal on the USB outlet is first going to run to the positive terminal on the switch.Now the purpose of this switch is to break the electrical current when you turn it off. So positive terminal goes to positive terminal, then the second positive terminal on that switch goes to the positive terminal on the battery. So you've got a flow of electricity going from positive through this switch to the positive terminal on the USB port. The negative terminal on the switch goes to the negative terminal on the battery. The only purpose of that terminal is to control the LED light on the switch, it needs the both positive and negative electrical currents in order to turn that light on. Similarly for the 12V port,positive connector going to positive terminal going to the positive terminal on the battery. Lets start the build. Start with drilling holes for the ports using the faceplate.Get your marker and simply trace the inside from both the top and the bottom.So that's where your holes are gonna go. Now we want to find the exact centers that when we're drilling. Insert the 12V and the USB outlet into the holes which we have just drilled. Now these ports have a little ring that screws on the back. This is what holds it in place. Next thing we're going to install is the power switch and SAE Solar Power Socket and the voltmeter. To begin wiring our tabs batteries, you're going to need a few things. Number one, you're going to need a battery. Number two, you're going to need your quick disconnects. You're going to need your squeeze connector connector,your wire cutters and stripping tool and you're going to need black and red wires. Place the vmax battery into the ammo box.So we've got everything in place, we have our ports in place, we have our battery in place, we've got our switch in place, and our volt meter. We're gonna start by wiring the USB port. The positive connection of the USB port is connected to the positive of the switch which is further connected to the positive of the battery.The negative connection of the USB is connected to the negative of the battery. This switch will break the flow of electricity on the positive side and that's what's going to turn our USB port on and off. Using squeeze connectors,USB port negative terminal is now connected to the same negative terminal as the 12 volt port.Connect the positive terminal from the switch to the positive wire which is coming from the 12 volt port and continue that positive flow from the switch to the positive terminal on the battery . So we now have our USB port and our 12 volt outlet connected to the battery through the power switch. We've got the negative terminal of the USB port, going to the negative terminal on the battery, we have the positive terminal of the USB port.Then we've got a positive going from the switch to the positive on the battery all through quick disconnects. The negative terminal on the battery going to the negative terminal on the switch simply allows the switch LED light to turn on without this negative current flow of electricity. This the LED light has no power.So we want to give that light power by connecting to the negati.ve terminal on the battery. The negative of the Voltmter is directly connected to the battery and using insulated clamps,we connect positive wire that's already running to the switch for the USB port.Now we want to connect to the positive wire leading to the positive terminal on the switch so that the volt meter will turn on and off with the switch button. Next, we're going to cover the SAE port. We want to be able to have the battery charged when we plug this into a charger.Using the squeeze connector we connect the positive to the positive terminal of the battery.And then same thing for the negative, you would take your squeeze connector and connect to the negative. Lastly,A 15amp fuse is used to protect the generator from overloading. If you connect at current that is too high for their internal wiring to handle, the fuse will break and it will stop all electrical current from flowing.So if anything goes wrong in any of this wiring, it has to get past the fuse before it reaches the battery. So if there's anything that's that's overheating, or overloading this fuse is gonna blow and it's gonna protect your battery from being damaged . Next step is connecting a solar panel to your generator .We connect the panel to the charge controller and then from the charge controller to your ammo generator. A charge controller prevents the battery from overcharging. You don't want to get over 15 volts. Here we use Renogy 30 watt solar panel, this panel comes by default, with an SAE connector on the back. This is the same kind of connector that plugs into your generator. Connect the wires coming out of the Solar Panel into the charge controller.Next is connecting the SAE cord from the generator to the charge controller. So you just put the panel on the charge controller, the charge controller into the generator, and you're done. If you want the whole system to be portable, say you want to be able to take your solar panel and your generator camping, you want to keep things as simple as possible, you could actually mount the charge controller directly onto the back of your panel. https://www.youtube.com/watch?v=MVVRPUHUMUo https://www.youtube.com/watch?v=DW6C-ZjmRzo
    • How to build a Homemade Micro Wind Turbine for under $50 that can be mounted anywhere
      This project goes in the detail on how to build a mini wind turbine..The wind turbine is a nice addition to your solar generator system for times when it’s cloudy and you are not receiving as much sunlight as you normally First step is to build some cheap PVC blades, what kind of motor we're going to be using and how we're going to attach this to the motor. We are making six blades or rotors here.What we want to do is we want to cut our PVC pipe to length first. Once you've got it cut to length, then you want to take your your straight edge again and and Marco line down the center and cut it in half. Make sure that you do that on both sides. One on this side, one on this side. And that they're perfectly in the middle so that you'll get two even sides. We need to cut a small little block down at the blade end, where we are going to put a drill hole and put a screw through it so that it attaches to the hub.On the top of the blade, we're going to cut away some of the material to resemble a swept wing, kind of at an angle. These are 14 inch long blades that is attached to the hub using set screws attached to the motor. The 12V motor used here is a 300 RPM geared motor which would be its maximum speed and it produces 600 milliamps when its fully loaded. The motor is placed inside a One and half inch PVC pipe ,another PVC Tee is connected from where the wires will down to the bottom where another 7 foot pipe that act as the tower or pole. The end of the pole goes into a shower drain which is then attached to piece of wood that acts a solid base. For the YAW system at the back end,a tail vane is made of a cheap flashing material that is bolted between an 8 inch piece of PVC.Put a hole through the middle of it with a bolt in between so that it can't move anywhere. We use an an old OSB for the base, size is about seven inches square. And then I just have a piece of treated lumber on the bottom. It's attached to this ball bearings so it can spin around. The Shower drain PVC is placed in the middle through some ball bearings. Route the wiring down through the hole for to connect to the charge controller. Next step is the wiring through the piping.We just need to connect these terminals to the appropriate sides of the motor. https://www.youtube.com/watch?v=6UZ2WtXlVoc https://www.youtube.com/watch?v=fjHW78bMUoY https://www.youtube.com/watch?v=c7a9RSzZKcE