test3

[vc_row][vc_column][vc_wp_text]

This video shows the build of a Water Pump From Scrap .Today I dig into our scrap pile to come up with enough parts to build ourselves a gasoline powered water pump. I first start off with an old gear pump I had laying around, then I salvage an old pressure washer base to mount everything on. To power this water pump I use that two horse engine I bought at a yard sale. build everything out of free find junk that would have gone to landfill or scraped, at least these useful parts can now have a new lease on life.
[/vc_wp_text][/vc_column][/vc_row][vc_row][vc_column][vc_wp_text]

This Video shows the build of a Homemade 12VDC Mini Box Fan! w/motor speed control!Powered with a 12v battery or 12v solar panel! Made Sturdy and is SUPER POWERFUL! pushes more air than a fan twice its size.Ithas a whopping 1500 CFM air-flow volume with wind speeds measuring in at over 20 MPH! (32 kph) and with the motor control switch you can set it to run at any of 100 different speeds! .Great for off-grid use, camping, emergencies or everyday use. tip: run it from a cars’ 12v cigarette lighter plug.[/vc_wp_text][/vc_column][/vc_row]



RECENT POSTS YOU MIGHT LIKE
  • How to build a Homemade Wooden Bandsaw Mill from Scratch.Step by step build Instructions
    This project goes over the build of a simple Homemade Bandsaw mill that can that turn hard maple into smaller lumber . The first step is to make the wheels of the mill. Here we use a three quarter MDF board to make this. The wheel size is 16 inch. We use a beam compass to cut circles and cut two wheels out of them. We make a seven and half pulley for the wheel using a three quarter inch plywood and drill a five eighth inch hole into the middle where the shaft goes. We take some hot melt glue and glue the stock collar onto the pulley and tighten it with a set screw so as to stop it from spinning. Before joining the wheel and pulley together, we make another small disc to go in between to act as a spacer .We glue the pulley to this spacer and from spacer to the wheel. Two wheel bearing blocks are bolted to the wheel on both sides using 4 three eighth inch threaded rods. Make sure that the threaded rods are tight inside the hole in the wheel, but the bearing blocks itself can move around. One way to keep these bearing blocks in place so that they dont move side to side is to apply some construction adhesive to the corners. Next step is building the frame for the saw from salvaged 2 X 4 boards. Make sure that the 2X 4's are straight. Take the bench hand plane and smoothen the edges so that the boards sit flat. It takes several shallow passes flipping the woods each time to get rid of all the twists and warps. Two frames pieces hold the wheel in ,the stationary drive wheel is placed eight and half inches from the end. Two five eighth inch holes are drilled on both the frames so that axles fits in there neatly. On the other side, one holes are drilled that gives the room to adjust the wheel. We also make an adjustment collar out of plywood that is bolted into the frame and the shaft . The collar can be moved to adjust the wheel. We also place couple of pieces across the frame and secure them tight so that the supporting boards are locked in position. On the other side we install the front wheel or top wheel. This wheel needs to move back and forth to put tension on the blade. It also must have a tracking mechanism. For that we make a two small piece that locks into the shaft on the front wheel and slides back and fourth. A guide piece is drilled onto to this piece . A one inch hole is drilled into our slider piece and a three eighth inch threaded rod is secured in there with a nut and washer. These rods help put tension on the blade and also adjusts tracking. Before putting the blades on the wheels, we put silicone caulking on the wheels to smoothen it out .These have advantage over bicycle inner tubes as it doesn't drape down over. The legs are attached to the frame using gusset blocks. To put the motor onto the frame , we take a melamine board and screw them aside the stationary wheel using a cross board. This piece of melamine not only supports the motor, it also helps to brace up the top to keep that from rocking. Secure them tight so that it resists moving while the cutting is going on. Next we make blade guides near the bottom to make a guard for the blades just in case it snaps and flies off. The blade guides are made of small piece of steel angle that is glued to a ceramic piece. The way blade guides work is that they don't actually touch the blade when it is running. It is only when the blade tries to move up or down that it will constrain it and keep it on track and prevent it from twisting. A thrust bearing made of regular size ball bearings is bolted onto an aluminum angle that is further attached to the blade guide. We make a dolly cart out of 2 X 4 boards and some castors to place the big maple logs and move it effortlessly through the blades . The castors are screwed in the ends using quarter inch holes. The castors are fixed in such a way that it moves only in one direction back and forth. https://www.youtube.com/watch?v=rhFEVf8zZkg&list=PLQl9KPrpiIH9Sk0wEiN9d0ANUOK-ntV-i
  • How to build a Multi Use Simple Homemade Wood Gas System from Scrap Materials that can be used as a Generator,Cooking Stove and Lantern
    This project goes over the build of a simple gasification system that functions to produce wood gas for running a generator, a cooking stove and for lanterns. We feed the wood chips and other materials through the opening at the top of the gasifier ,the air also gets drawn in from the top .The air would drop through the wood mass, down to the reduction zone and gets collected down at the bottom of the tank through the output pipe . The materials needed to build this down draft style gasifier are a 3 old propane tanks, old steel sheets, wood pellets. The first step is to make sure that propane tanks are empty .Remove the handles from the top of the 3 propane tanks and unthread the valves. Cut the top portion from 2 tanks and stack the body of the tanks on top of each other and weld it. One of the cut out top pieces can be used a lid . The bottom portion of the lower tank is cut open to create the reduction zone of the gasifier. To make the reduction point, we take the scrap steel sheet and make a five inch wide small tube of the them and weld them to the bottom third propane tank . The bottom five gallon propane tank is used as a ash bin where all the ash is going to get caught and as an outlet for all the gases coming out of the system. The top portion of this tank is cut in such a way that it fits the reduction zone collar of the secondary tank. Make sure that both the tanks fits nicely together so that you can pull the inner chamber out of the bottom ash tank to remove it, dump the ash catch out and use it again and again. The top of the upper tank is cut open .This acts as the feed area where all the wood pieces are dropped in. We make a screen with holes using a 20mm hole saw cutter from the leftover cutouts of the propane tank. We are gonna mount this screen inside the gasifier lower reduction zone. A hinge and a wire is attached to the screen so it can open and close. This gives us the ability so we can shake the screen if it plugs up with ash or other materials. The wire goes through the reactor up to the top . We have a pressure relief system installed on the lid of the gasifier. If anything were to happen inside of the gasifier , the build up pressure can be made to escape through the top lid .This is done by hooking up two springs on both sides of the lid through small loops .The springs on both sides is attached to hand levers. We drill 8 half inch diameter holes just above reduction zone area and put thick steel tubing through them to the center of the chamber. The airflow will go in and be drawn down through the center of the reduction zone that helps in efficient burn. The pipes are curved in to the chamber so that it does not interfere with any wood mass as it goes into the reduction zone. We add plugs along these 8 tubes to regulate the air flow into the system. Next step is to add the draw fan to the gasifier. Here we use a pellet stove fan .We add a 2 inch plate over the face of the fan and a threaded pipe to seal any air going into the gasifier. We start up the gasifier by putting some chopped wood through the top and use the fan to get the wood gas producing out of the bottom outlet pipe. https://www.youtube.com/watch?v=h9vuphZe8iU
  • How to build a Powerful DIY Off-Grid Emergency Backup Generator .Fully Portable!!
    This project goes into the build of a portable and powerful off grid emergency solar generator with higher capacity than commercial units at a fraction of the cost. This system can keep a small fridge operating 24/7, charge your devices, power TV ,LED lights, Laptops. it is small enough to be stored away in your garage and portable enough to move where it was needed. The main components used to build this generator are as follows. 4 Renogy 100 Watt 12 Volt Monocrystalline Solar Panel Renogy Rover 40 Amp MPPT Solar Charge Controller Renogy Deep Cycle AGM Battery 12 Volt 100Ah Sug 2000W(Peak 4000W) Power Inverter Pure Sine Wave DC 12V to AC Renogy 20 Feet 10AWG Solar Extension Cable with MC4 Female and Male BLACK+DECKER BM3B 6V and 12V Automatic Battery Charger / Maintainer 6 Circuit Fuse Block W/Negative Bus Milwaukee Hand Truck with handle Control Panel with USB Charger,LED Voltmeter,12V Power Outlet, ON-OF Switch. To create a solar system that can truly meet your needs and cope with the variability of your environment, you really need to do some planning. This will help you avoid building a system that isn't up to the job and can save you considerable money by preventing the expense of replacing components later on. To calculate the number of batteries and solar panels you will need to create a system to provide power in all seasons through inclement weather and at your particular latitude, you need to determine the devices you intend to power, log their power consumption across a few days using a power meter. Then find the reserve days . This is how many non sunny days the system can tolerate while still powering your devices. Also find the recovery time by calculating how many days of sun that will be needed to fully recover when the batteries have run down due to lack of sun. You also need to know the usable charging hours in day and the actual battery round trip efficiency since batteries give back something less than the amount of power used to charge them. Here we use 4 100 Watt 12 Volt Monocrystalline Solar Panels to charge our 12 Volt Deep Cycle Battery. The panels are wired in series so that the voltages add together and you can get up to 80 volts from four panels. With this system there is enough voltage to begin charging as soon as there is any daylight at all. It also charges the batteries right up until dusk. Another advantage of the series wiring is that it is much better for long wire runs when the solar panels are not close to the generator and you can use less expensive smaller wire gauges for the solar panel runs. To use panels in series you must have an MPPT type charge controller. They are specially designed to accommodate the high voltage of panels wired in series up to the particular controllers voltage limit .MPPT controllers are much more efficient converting nearly all the energy coming from the panels into charging power for the battery. A 2000 watt pure sine wave inverter is used that can provide up to 4000 watts of surge power, and with enough battery support can run any conceivable device including those with motors. To store energy we use a 2 12V AGM marine batteries . These give plenty of reserved capacity that will last with reasonable care . They don't leak and can tolerate cheaper discharges and have very good round trip efficiency. Four 100 watt solar panels are connected through the 40 amp MPPT charge controller . The panels can deliver up to 2400 watts of solar power in the shortest days of winter. And the charge controller converts solar power to charging power very efficiently and also support serial panel configurations increasing the systems capability. A heavy duty hand truck is used for loading all the components . A frame made of angle iron is welded on to the platform to mount the batteries. Two angled straps are welded across the truck to provide more support for the battery frame. The various components are mounted on a back support made of five eighth inch plywood. I use a tapered punch to make starter holes for all the screws that hold the components. The hand cart is laid on its back and the plywood board is aligned in such a way it doesn't block the holes. While the cart was on its back I screw down all the components with stainless steel screws. For the project we use a thinner 18 gauge wire for the low current circuits, medium 14 gauge for the 12 volt port and heavy 10 gauge for the high current charging circuits. Red is always connected to the plus or positive connectors, black always to the minus or negative. The positives and the negative connection coming from the solar panels are connected to the solar charge controller with the help of a quick disconnect Wire Harness SAE Connector. The negative of the solar charge controller is directly connected to the negative connection of the battery while the positive goes through a fuse block before connecting the positive of the battery. The negative connections from switch, voltage display ,USB ports and battery charge meter is connected via a medium 14 gauge wire to the battery negative. The positives are connected to the battery through the fuse block. The 12 volt port is on its own fuse so it gets separate wires in the medium 14 gauge. The positive of the 12V Battery Charger is connected to the fuse while the negative is connected to the battery. The batteries are placed on platform of the cart facing opposite directions so that positive and the negative terminals are near the plywood backboard where the components are attached. The battery connection cables are cross connected to create a parallel 12 volt configuration careful to ensure the block cable connected only to minus terminals at both ends and the red cable connected only to plus terminals at both ends. Next step is the orientation of the solar panels. As you probably know the sun is lower in the sky in the winter higher in the summer. In the winter, the days are also shorter as you really want to optimize for winter to get as much energy as you can when the days are short. Since my panels are fixed, we want to point them due south and angle them for the winter sun. There are tables you can find online that can give you a pretty good idea of the right vertical angle for your geographical location. In the summer the sun is pretty much straight overhead, so the panels are optimal when laying flat. The angle panels are their most productive in the depth of the winter losing a little each day until the height of the summer as the sun is further off the winter angle. Meanwhile, the flat panels are less efficient in the winter because the sun is at a low angle but gaining each day as the sun gets higher in the sky. https://www.youtube.com/watch?v=QZYAAatdlmc