How to build a Simple Homemade Wood Burning Stove heater with Heat Exchanger for your Garage .No Electricity required and Inexpensive…..

    This project goes into the build of a homemade wood burning heater with a heat exchanger for your garage . This heater is build from a recycled old propane tank . The other materials you need to build this heater are 55 gallon drum, fan blower, quarter inch steel plates , eighteen 2 inch steel pipes for the heat exchanger, welding unit, plasma cutter.

    Before cutting into the propane tank , make sure to clean the tank so that there is no residual gas left in it . Cut both ends of the tank using the plasma cutter. Now we cut a 30 inch length piece from the tank .This acts as a main body where the heat exchanger pipes are installed. The heat exchanger consists of 18 two inch pipes that run the length of the heater from front to back.

    Two quarter inch steel plates are welded at the ends of the propane tank . Before doing that we make 18 holes at both the ends of the steel plate. This is done to install the heat exchanger pipes across the length of the tank.

    With the help of an eighth inch hardboard, we make a template for cutting the 18 holes out of the steel end plates. The hardboard acts a guide for the plasma cutter to cut the holes.

    The pipes for the heat exchanger are cut 31 and half inches long. Half inch sticks out at both the ends of the heater. They are welded to the steel end plates at both ends.

    The opening for the door at the end of the heater for the wood intake has a dimension of 16 inch X 12 inch . A similar template is placed on the end plate and the opening is cut using the plasma cutter.

    A frame around the door is made using a three quarter inch by three sixteenths inch flat stock .This is used for the door opening and to give the door something to close up against. Hinges are welded near the door opening for attaching the door.

    The locking mechanism for the door to hold it shut is made using a flat stock and couple of bolts . The bolts are welded onto the flat stock and attached inside the heater just beside the door . The handle made of a 90 degree round stock is welded to couple of washers and the door is sandwiched in between.

    The end plates along with the door is welded onto the body of the heater at both the ends and a hole is made at the top of the propane tank body for installing the flue exhaust pipe.

    A small hole is cut near the door and a damper in the form of a simple sliding door is attached to the hole that will control the airflow into the heater.

    A section from old 55 gallon steel barrel is cut and welded onto the backside of the heater .An inexpensive fan blower is attached to this 55 gallon drum . This is installed to concentrate the air that is going through the heat exchanger pipes.

    The flue pipe is welded onto the top of the heater so that the harmful smoke and gases escape through the exhaust . A grate is placed into the heater through the door opening , wood pieces are introduced and the we start firing the heater. After few minutes , the fire will heat the heat exchanger pipes . The fan blower is turned on and the hot air is blown through the pipes into the garage .



    RECENT POSTS YOU MIGHT LIKE
    • DIY Video : How to build a simple Off Grid Refrigerator using a 5 gallon bucket . No Ice Needed !!
      This project goes over the build an off grid survival fridge using a five gallon bucket . It has a peltier cooling module on the top. So no need of refrigerant or ice cubes. The materials you need to build are as follows. A 12V 12A Thermoelectric Peltier Refrigeration Cooling System unit from Amazon, a 5 gallon bucket , 4 gallon Styrofoam liner from Home depot. This refrigerator works by the principle of peltier effect. The Peltier effect shows that a temperature differential is created when a DC current is applied across two different materials .The peltier unit is made of using two thin ceramic wafers with a series of n and p semiconductor materials sandwiched between them. The ceramic wafers add rigidity and provide the necessary electrical insulation for the module. The n type semiconductors have excess electrons, while the p type have a deficit of electrons with one n and one p making up the junction couple that creates the thermoelectric effect. When a DC current is applied to the circuit, the thermoelectric module can work as a cooler or heater depending on the direction of the current. A thermoelectric cooler or tech transfers heat from one side of the device to the opposite side against the temperature gradient creating a cooling effect. We use heat sinks and CPU fans on the peltier chips to radiate and lower the heat generated on the hotter side and move the cooler air into the bucket from the cold side. The peltier setup in this build uses two 12V 92mm fans on the hotter side glued to a large 200m X 100mm Aluminum heat sinks, two 12v 5.8amps peltier chips are glued under two 40mm heat sinks using thermal paste. 2 40mm fans are also attached to the heat sink. The Styrofoam liner is inserted in to the five gallon bucket . Two small rectangular cuts are made on the lid of the liner so that the heat sinks fits inside there and gets good airflow around the edges. We cut a rectangle on the top lid of the bucket to allow the peltier module to sit in. Small vent holes are drilled on the sides of the lid using a standard quarter inch drill bit so that no hot air gets caught between the bucket lid and the Styrofoam lid. Cut a small notch in the bucket using tin snips so the wires from the peltier units will come out without getting pinched under the lid. You can hook this unit to 100 watt solar panels straight , 12 volt deep cycle battery, 12 volt transformer to the wall, or you can use your car CIG lighter. This unit can drop the temperature inside the bucket from 81 to 47 degree Fahrenheit in minutes. https://www.youtube.com/watch?v=qj2PBnCdRgM
    • How to build a Large 2000W Portable Solar Power Generator at Home from scratch.
      The idea of a completely silent power generator that can still run large power loads, and never need gasoline is a really cool concept. This project goes over the build of a large 2000W Portable Solar Generator that can power appliances ranging from a table saw to charging your phone effortlessly. We need a large box to hold our basic components. Here we use a pelican 1620 protector case that is durable, dustproof and waterproof .This is going to be the case that we package everything into. It's got wheels on the bottom so you can roll it around ,also has heavy handles on either sides. The battery is a AGM glass mat ,coil would style, 12V optima deep cycle battery. A deep cycle battery just allows you to get a little bit deeper into the discharge before you are starting to shorten the life of that battery. This battery also has the ability to be mounted in any orientation . So it is safe whether the battery is on its side on its back or even upside down as long as we have it mounted securely so that nothing shorts against our terminals. The next major components for our build is the 2000W inverter from Krieger. This one has some large terminals on the back for our wiring. Also has a active fan here for ventilation. Also comes with a remote control switch. The 100W Solar Panel is from Renogy. It has the bus on the back for connecting in to your solar charger .It also comes with a 30A Solar Charge controller. This can run up to four of the 100 watt panels in a 12 volt system. The back of the solar panel comes pre wired with MC4 connectors, as well as a couple of MC4 pigtails. We use high quality 16 gauge speaker wire to extend the connection. These wires are highly flexible for portable use. To connect it to the MC4 pigtails we need to go ahead and strip the insulation off and use butt splice connectors to crimp them to the MC4 pigtails. In case you cant to charge the system with standard AC power ,we use a 1.5A Battery maintainer / Float or Trickle charger. This will be good for just keeping it topped off when it is in storage. Or if you just want to charge up your batteries and you really don't have a place to be setting the panels out. Next step is mounting components on the outside of the case . Before mounting any component, factor in how the internal components are going to placed inside the case. On one side of the case ,we are going to mount a small LED work lamp with toggle switch, a 12V gauge pod with 5V USB output, digital voltmeter,12V cigarette socket ,an AC input plug for using with the trickle charger, a 6pin solar panel trailer connector. These components are secured in place using a RTV silicone sealant. One the other side of the case , we are going to mount the inverter remote control switch, 350A high current plug which is used for jumper cables or to add high current loads, a GFCI AC outlet with a weatherproof cover. The GFCI outlet is connected to the inverter inside the case. We want to put the battery as close to the wheels as possible, because that will help keep the heaviest part down low when moving the case around either on the wheels or by carrying it. We place it snug into a corner of the case using battery mount and couple of pieces of 2X4. The inverter is placed inside the case in such a way that there is enough space for air ventilation and for tucking some of the wires underneath. The inverters are secured in place using mounting tabs and 10x24 machine screws. The PWM solar charge controller is also mounted in the same way near the solar panel connector input. The trickle charger / battery maintainer is placed as low into the back of the case .This is not something that will get very warm so we don't need to worry about heat dissipation or anything like that . We plug the power cord from the trickle charger into the AC input cord. Next step is the wiring. We start by connecting the power cables from the inverter to the battery. The positive and negative from the inverter is connected to the positive and negative of the battery respectively. To distribute power in our generator ,we use a six circuit fuse panel for the positives and a busbar for the grounds. We use two inexpensive battery cables to run the power to our distribution blocks as well as running the power to our high current quick connector. The positive red connection from the quick connector goes to the fuse panel and the black negative connector to the ground busbar. Both connections are further extended to connect to the positives and negatives of the battery respectively. The LED lights are connected to the 3 way connector switches. The switches are further connected to the power distribution fuse block. Similarly a single switch is connected to the USB outlet, voltmeter and the cigarette lighter ports in parallel. The positive from the switch is connected through a daisy chain mechanism to the three positives of the ports ,the negatives are similarly connected to our distribution block. At this point, we now have a power wire and a ground wire for every single one of our accessories connections . We bundle these wires and keep it neat and tidy using zip ties. Separate the positive wires from the negative wires, we are going to be rounding the negative wires to our ground busbar. After we have all of the ground wires connected, we can move on to the power wires on our distribution block. Each one of the blade connectors represents one fuse circuit. We connect the positive red wires from charge controller, battery trickle charger, usb ports,voltmeter,12V outlet to the fuse circuit. We are using a 30A fuse for the charge controller,12V socket, 20A for the LED work lights, 5A for the trickle charger. https://www.youtube.com/playlist?list=PLIorqrLdxMKZV464fFUflegLuuvLEyMrU
    • How to build a Powerful DIY Off-Grid Emergency Backup Generator .Fully Portable!!
      This project goes into the build of a portable and powerful off grid emergency solar generator with higher capacity than commercial units at a fraction of the cost. This system can keep a small fridge operating 24/7, charge your devices, power TV ,LED lights, Laptops. it is small enough to be stored away in your garage and portable enough to move where it was needed. The main components used to build this generator are as follows. 4 Renogy 100 Watt 12 Volt Monocrystalline Solar Panel Renogy Rover 40 Amp MPPT Solar Charge Controller Renogy Deep Cycle AGM Battery 12 Volt 100Ah Sug 2000W(Peak 4000W) Power Inverter Pure Sine Wave DC 12V to AC Renogy 20 Feet 10AWG Solar Extension Cable with MC4 Female and Male BLACK+DECKER BM3B 6V and 12V Automatic Battery Charger / Maintainer 6 Circuit Fuse Block W/Negative Bus Milwaukee Hand Truck with handle Control Panel with USB Charger,LED Voltmeter,12V Power Outlet, ON-OF Switch. To create a solar system that can truly meet your needs and cope with the variability of your environment, you really need to do some planning. This will help you avoid building a system that isn't up to the job and can save you considerable money by preventing the expense of replacing components later on. To calculate the number of batteries and solar panels you will need to create a system to provide power in all seasons through inclement weather and at your particular latitude, you need to determine the devices you intend to power, log their power consumption across a few days using a power meter. Then find the reserve days . This is how many non sunny days the system can tolerate while still powering your devices. Also find the recovery time by calculating how many days of sun that will be needed to fully recover when the batteries have run down due to lack of sun. You also need to know the usable charging hours in day and the actual battery round trip efficiency since batteries give back something less than the amount of power used to charge them. Here we use 4 100 Watt 12 Volt Monocrystalline Solar Panels to charge our 12 Volt Deep Cycle Battery. The panels are wired in series so that the voltages add together and you can get up to 80 volts from four panels. With this system there is enough voltage to begin charging as soon as there is any daylight at all. It also charges the batteries right up until dusk. Another advantage of the series wiring is that it is much better for long wire runs when the solar panels are not close to the generator and you can use less expensive smaller wire gauges for the solar panel runs. To use panels in series you must have an MPPT type charge controller. They are specially designed to accommodate the high voltage of panels wired in series up to the particular controllers voltage limit .MPPT controllers are much more efficient converting nearly all the energy coming from the panels into charging power for the battery. A 2000 watt pure sine wave inverter is used that can provide up to 4000 watts of surge power, and with enough battery support can run any conceivable device including those with motors. To store energy we use a 2 12V AGM marine batteries . These give plenty of reserved capacity that will last with reasonable care . They don't leak and can tolerate cheaper discharges and have very good round trip efficiency. Four 100 watt solar panels are connected through the 40 amp MPPT charge controller . The panels can deliver up to 2400 watts of solar power in the shortest days of winter. And the charge controller converts solar power to charging power very efficiently and also support serial panel configurations increasing the systems capability. A heavy duty hand truck is used for loading all the components . A frame made of angle iron is welded on to the platform to mount the batteries. Two angled straps are welded across the truck to provide more support for the battery frame. The various components are mounted on a back support made of five eighth inch plywood. I use a tapered punch to make starter holes for all the screws that hold the components. The hand cart is laid on its back and the plywood board is aligned in such a way it doesn't block the holes. While the cart was on its back I screw down all the components with stainless steel screws. For the project we use a thinner 18 gauge wire for the low current circuits, medium 14 gauge for the 12 volt port and heavy 10 gauge for the high current charging circuits. Red is always connected to the plus or positive connectors, black always to the minus or negative. The positives and the negative connection coming from the solar panels are connected to the solar charge controller with the help of a quick disconnect Wire Harness SAE Connector. The negative of the solar charge controller is directly connected to the negative connection of the battery while the positive goes through a fuse block before connecting the positive of the battery. The negative connections from switch, voltage display ,USB ports and battery charge meter is connected via a medium 14 gauge wire to the battery negative. The positives are connected to the battery through the fuse block. The 12 volt port is on its own fuse so it gets separate wires in the medium 14 gauge. The positive of the 12V Battery Charger is connected to the fuse while the negative is connected to the battery. The batteries are placed on platform of the cart facing opposite directions so that positive and the negative terminals are near the plywood backboard where the components are attached. The battery connection cables are cross connected to create a parallel 12 volt configuration careful to ensure the block cable connected only to minus terminals at both ends and the red cable connected only to plus terminals at both ends. Next step is the orientation of the solar panels. As you probably know the sun is lower in the sky in the winter higher in the summer. In the winter, the days are also shorter as you really want to optimize for winter to get as much energy as you can when the days are short. Since my panels are fixed, we want to point them due south and angle them for the winter sun. There are tables you can find online that can give you a pretty good idea of the right vertical angle for your geographical location. In the summer the sun is pretty much straight overhead, so the panels are optimal when laying flat. The angle panels are their most productive in the depth of the winter losing a little each day until the height of the summer as the sun is further off the winter angle. Meanwhile, the flat panels are less efficient in the winter because the sun is at a low angle but gaining each day as the sun gets higher in the sky. https://www.youtube.com/watch?v=QZYAAatdlmc