How to recycle scrap metal in the backyard by building a simple Mini Metal Foundry from start to finish

    In this project, we’re using equal parts of sand and plaster to make a simple backyard foundry that’s powerful enough to melt scrap metal in seconds.

    With this homemade furnace, we have the power to liquefy aluminum in the backyard and cast just about any object we can think of.

    You will need some big bag of play sand and some plaster of paris both of which you can find at your local hardware store for under $20.

    We are also going to need a 10 quart steel bucket and a tablecloth to cover anything.

    For this makeshift refractory lining we need One and 1/3 buckets full of plaster Paris or 21 cups, One and 3/4 buckets full of sand or 21 cups and 1 and 1/4 buckets filled with water or 15 cups.

    Mix everything together. It’s really important to get all the dry powder wet and work out any lumps as quickly as possible. And after mixing for a couple of minutes, it should be fairly runny and roughly all the same color.

    Transfer the mix to the steel bucket upto 3 inches from top.
    We use the plastic measuring bucket to form the center of the foundry.
    Let the mixture dry for 3 minutes.

    Next step ,we turn an old steel fire extinguisher into a custom crucible. Depressurize the tank and unscrewed the valve from the top to make it safe and easy to cut in half with a hacksaw.

    At this point the plaster should be pretty well set. So let’s dump the water from the bucket then use a pair of channel locks to pull the bucket out.

    Next step is make an air supply port .Using 3/8 inch hole saw and a metal cutting blade, we cut a hole to accommodate the one inch steel blower tube.

    The blower tube is made of one inch steep pipe ,one inch PVC coupling and one inch PVC pipe.Threads on one half of the coupling screw onto the steel pipe and the slip adapter on the other end simply pushes onto the PVC side easily.

    Next step is to build a lid to retain the heat.You need a couple of 4 inch U bolts.Make them stand upright into a 5 quart bucket filled with the insulating mix.

    To relieve pressure buildup, make a vent hole using a 3 inch hole cutting saw.

    This design works great for venting pressure and gives us the option to melt metal as well without even having to take the lid off the furnace.

    By the way, if you run out of soda cans to melt, you could try using it as a blacksmithing forge or even a barbecue for summertime grilling.

    We evenly place 5 charcoal briquettes at the bottom of the crucible made out of steel fire extinguisher, helps smelt the can faster once we fire it up.

    A hair dryer is taped to a PVC pipe and inserted a couple of one inch couplings to connect the steel tub eat one end and give the blower to a quick release feature. This way it’s super easy to take apart and fits into a five gallon bucket for easy storage.

    The charcoal is filled it to the top and we breathe life into the steel furnace with a propane torch.The hairdryer is set to the low setting and blow a steady stream of oxygen on the charcoal to really heat things up.

    The lid we made keeps the heat inside so it conserves energy while it’s bringing up the temperature. The coolest part is that the crucible lines up perfectly with the hole in the center.

    The container is three inches wide, which is the perfect size for melting standard size soda cans like these and at temperatures over 1000 degrees Fahrenheit .

    In order to isolate aluminium, first we remove the crucible making sure we have got a very secure grip with our tongs and slowly pour the liquid into a steel mold.

    The Soda cans are molded in the form of ingots.The purpose of an ingot is to keep some pure metal handy for when you want to make something cool.



    RECENT POSTS YOU MIGHT LIKE
    • How to Dig a Shallow Well from Start to Finish for offgrid homesteading
      This project goes over how you can dig your own shallow well using simple tools that you can get from your local garden store. The materials you need to dig and install a well are as follows. A customized Seymour AUA2 Post Auger to dig the hole. A Shovel is used to move the pea gravel and dirt out of the way. A Four inch casing PVC pipe that is going into the hole that is dug and this is going to hold the water until you need it. One and one fourth inch threaded adapter. This connects the bottom of the casing pipe to the foot valve. The foot valve is one and one quarter inch. This valve allows the water to come in and not go out. This helps to keep the pump primed. A water well pump pipe which is basically a one and one quarter inch PVC pipe. This will pull the water from the bottom of the well bringing it to your pump. The length of this pipe is going to be determined by how deep your well is. It should be at least a foot shorter than the depth of your well. You don't want this pipe sitting on the bottom because it would just be sitting in sediment and it will be clogging things up. A pitcher pump that has a one and one quarter inch threaded water inlet at the bottom. A closet flange. It makes mounting the pump to the top of your well four inch casing pipe very easy and it also helps keep things clean. Basically you would just set this inside you your four inch pipe, drill a hole out of the middle of a board, screw that to the top of this flange then mount your pump to the board that you have fastened to this. A one and one quarter inch threaded adapter. This will screw into the bottom of your pitcher pump and in turn, it will connect to the pipe bringing water to your pump from the bottom of the well. Teflon tape, PVC glue. Pea gravel - This will go down around the casing pipe of the well. The amount of pea gravel you need is determined by the depth of the well and water height. Quikcrete or aerated concrete to cap the top of the well. This prevents groundwater contamination and keeps stuff from finding a way to easily get into your well. To find the spot for the well, we use couple of coat hangers as dowsing roads. We take a drinking straw ,cut it in half and slide it over the coat hangers. This helps us in not using our hands or fingers influence while dowsing. Also it is easy to rotate the rods within the straws. The rods are kept parallel to the ground . If the rods cross each other , then mark the spot on the ground directly down the cross . This is the ideal spot for the well. The auger used for digging the hole for the well is modified from the default Seymour Post hole auger. We use a custom 5 foot 11 gauge one and half inch square tubing as the extension for the auger . The handle of the auger is a three foot three quarter inch pipe welded to a four inch 11 gauge square tubing. We start digging into the the spot that we have found earlier using the dowsing rods. Pay attention to the changes in the color of sand , because that can give you clues as whether you are getting closer to water. We extend the auger using the square bar tube once the auger handle is near the ground. Once you have hit wet clay, there is going to be suction around. We twist and pull at the same time to get the auger out of the hole in this situation. Next, we put the 20 foot PVC casing pipe into the hole . We cut slots using a reciprocating saw on the pipe one foot from the bottom of the well to the top of the water level to allow the water to flow into the well. Pea gravel is poured around the sides of the pipe all the way up to the slots . The remaining hole area around the pipe is packed with sand and clay. We seal the well by packing it around the sides with quickrete cement. This helps the water not to be able to run down into your well but around it. We lower the one and one quarter inch well pump pipe with the foot valve at the end into the PVC casing pipe. A four inch drain flange is secured on top of the casing pipe . A pitcher pump is then attached to top of the pipe. To prevent the pump from moving, it is bolted to the board where the flange is installed. To prime the well, we pour some water down through the pitcher pump. Pump out the dirty water until it is clean. https://www.youtube.com/watch?v=5rYPRMm8Arw
    • How to build an DIY 12 V Portable Water Pump Box with filtration system for Outdoor Survival / RV
      This project goes into the build of an offgrid portable water pump and filtration system that can turn any water from your creek,lake,river into safe and clean drinking water . This 12V portable system can be powered by solar or from your car directly and is ideal for camping , RV or outdoor survival enthusiasts. This system enables them to pump water from a fresh water source, filter and then store or use in case of emergency survival situation. The materials you need to build this portable filtration system are as follows. A tactix storage box to lodge the water pump,inlet and outlet hoses, an inline water filter or twin carbon 0.5micron filter, pex pipe, garden hose pipes, 12mill barb strainer,rocker switch ,12V Shurflo water pump with the flow rate of 11 litres per minute, 50 amp Anderson plug and 10m heavy duty wire ,basic tools such as wire cutters, long nose pliers, solder. The first step is completing the wiring for the water pump inside the tactix tool box. The rocker switch , the Anderson plug and a 7.5 Amp inline fuse are wired. The 12V rocker toggle switch is mounted at the center of the box lid. The power input plug or the Anderson plug is mounted to the left of the switch. This input plug connects to the car battery or a solar battery. The positive red wires from the switch is connected to the Anderson plug through an inline fuse .The negative black wire from the plug goes straight to the switch. The remaining wires from the switch is then connected to the water pump which will be installed later. The wires are covered with corrugated split tubing to ensure that it is protected and safe. The filter strainer is installed on the inlet side of the pump using an elbow, thread tapes. The strainer will filter out any unwanted debris before it goes to the pump. Couple of holes are drilled into to the side of the box where the inlet and the outlet hoses will connect the water pump. The male fitting are attached to the holes before the pump is installed. The pump is placed inside the box and mounted securely in such a way that the elbows are facing towards the two holes for the exterior hoses that was just made at the side of the box. Once the pump is mounted ,we connect the red and black wires coming from the switch to the positive and negative connections of the pump. The wires are once again covered with corrugated split tubing for safety. To connect the pump with the hose outlets , we measure the distance between the outlets and the pump and connect two pex pipes . Heat was applied to the pipe for bending and moulding them to connect the outlets. The 10 metre 50 Amp Anderson plug extension heavy duty cable wire is connected to the power source .Here the power draw is from a car battery. The other end is connected the input anderson plug on the top side of the box. The inlet hose with the strainer attached is placed sitting midway into the water source .The other end of the hose is connected to the intake pipe coming from the pump inside the box. The The other hose is connected to the outlet pipe coming from the water pump inside the box. At the end of the hose , we connect an inline water filter or a twin carbon filter . The carbon filter ensures that there is no sediments or debris inside the water and also helps to eliminate bacteria and other contaminants. https://www.youtube.com/watch?v=bLiTn8YacWo
    • DIY Video : How to heat your garage the Inexpensive way by building an Outdoor Stove with Heat Exchanger
      This project goes over the build of an inexpensive garage heater using DIY outdoor barrel stove with a heat exchanger. This outdoor setup is safe because you dont want the stove inside the garage to catch fire if you are working with any flammable gas. We use a 30 gallon drum for the stove. The access doors and legs are purchased from the local store. The heater exchanger is made out of four inch steel pipe .We take couple of 4 foot pipe and weld them together using another small pipe. This pipe goes inside the firebox and connects to the chimney pipes. The pipe should be thick enough that it can withstand the heat of the fire without sagging or bending. This pipe heat exchanger adds positive pressure . Removable hatches are made on one side of the stoves to connect the 2 four inch aluminum flex chimney pipes from the outside barrel to the garage. Inside the garage we place a 4 inch exhaust fan blower that sucks the colder air from the floor and blows it through one of the flex chimney pipe into the stove. The blower is actually a hydroponics duct exhaust fan purchased from Ebay. The cold air gets pushed into the stove and moves through the heat exchanger steel pipe , gets heated and then moves out through the second chimney flex pipe and back into the garage. The hot air from the stove moves into the garage through the second pipe. In order to get more hot air, we also add a drip fed waste oil system to the outdoor stove . The oil gets dripped slowly from a tank into a frying pan on top of the stove .You can add cotton rags and let it drip into there and it just keeps burning like a wick. The combination of both wood and waste oil produce better fire . If the stove gets too hot, you can turn of the oil or use oil only to maintaining the temperature. You can put an insulated shack around the stove to minimize the heat loss. https://www.youtube.com/watch?v=fn4CerxpNug