DIY Video:How To Turn Your Old Fan Into An Airconditioner AC for cheap.

    This project shows you how can take an old table fan and convert it into a simple ,cheap and easy to make homemade AC .

    The materials needed for the this project are a table fan, 75 gallon per hour fountain pump with valve to control the water flow, multi purpose zip ties ,two 3/8th inch transparent PVC Pipe tube, 15 foot quarter inch copper tube,two hose clamps.

    Unhook the locks if any and remove the screen of the fan. Take the copper coil and wind them across the rims of the fan .Secure them tight on the screen using multi purpose ties.

    Add the screen back to the fan body and then adjust the two ends of the copper coil by bending them to face the back of the fan and secure them using ties.

    Two 3/8 transparent vinyl PVC pipes are connected to the copper tube ends using hose clamps.

    We attach the fountain pump to the end of the vinyl PVC tube that goes straight into our cooler. The recirculated water coming from the other end of the tube goes straight back into the cooler bag. The cooler bag is filled with ice packs and water. The water pump is submerged into the bottom of the bag with ice and water over it.

    The water which is pumped with the help of the fountain pump gets recycled through the vinyl and the copper pipe and moves back into the bag, so you dont need to add more water .Both the pump and fan can be connected to solar generator in case if you want to make the system portable .

    • How to build a Simple Homemade Wind Generator from Old Ceiling Fan ,Microwave Oven Parts ,Old TV Antenna and other free junk
      This project goes over the build of a homemade wind generator built from random junk ceiling fan ,microwave oven transformer ,office chair, an old piece of a TV tower, and some random electrical stuff. The blades are also from an old ceiling fan .It is extended with some wood and fibreglass on it to make it stronger. A scrap piece of pipe is attached as a shaft to the hub of the turbine. An office chair frame which can move freely is welded to the pole/post of the turbine. This is welded to an old TV Tower. 4 magnets are glued on the hub. The frame of an old microwave oven transformer is cut .Its core is exposed and that is welded onto the brackets. The magnets pass over the transformer core and induction takes place creating electric current. We can use that current to charge a battery or to power lights or whatever. A multi transformer setup would generate more power. We hook up a rectifying diode to convert from AC to DC and some capacitors which can even out the voltage and give us direct current. Also a diode to block the current from the battery to go up back up to the generator. This set up can charge small batteries. A piece of sheet metal is welded onto the bracket of the ceiling fan. Four magnets are spaced apart and aligned along their respective poles in north-south directions and glued to the bracket using 2 part epoxy. To generate more wattage from the wind generator ,we use an old 120V DC lawnmower motor. Because we have multiple poles, we have magnets that are really close to the armature, this is a way better motor to use. The only downfall of this is that it has brushes, eventually it's the brushes are going to wear out, you probably get a few years out of it before you need to replace those. This motor would probably put out about 100 watts.
    • How to build a Homemade Super Efficient Portable Solar Generator
      This project goes over the build of a Homemade medium sized and moderately priced portable solar power generator that is designed to be powered by 100W Polycrystalline Solar Panel. The case for this portable system is from Plano sportsman, quite sturdy and rugged that a typical container. Costs about $25 . It has a nice top with handles that latch it down. On the back of the system, we have two pin SAE port that allows the energy from the solar panel to come into the system. It directly goes into a 30A solar charge controller. The negative from the charge controller is connected to the negative of the batteries. The positive is connected via a switch to positive of the battery. The negatives and positives of the batteries are connected to each other. The negative of the inverter is connected to the negative of the battery. The positive is connected to a battery switch off circuit that is further connected to battery positive through a switch. The USB ports,12V DC outlet, DC meter all are connected to the respective terminals of the batteries. To connect to the AC outlet from the inverter, we take a 3 wire extension cord which can be bought from the local hardware store . The negative end of this wire is connected to the negative of the shallow box AC outlet and the positive is connected via an 15A inline fuse and a current transformer. The ammeter is connected to current transformer and the 110V outlet. On the front of the system, we have the accessory ports including a 12V power indicator , 2 USB ports with 5V one amp and 5V 2.1amp, 12V outlet, AC Voltmeter and ammeter. Amp meter tells how many amps we drawing out of the system using various appliances. This can help us understand how much solar power is being generated during the day versus solar power being utilized from the system. The whole system is turned on a 12V master key switch that activates inverter, case temperature sensor, cooling fans , AC power outlets. We install a key and power up the AC side of the system. There is two fans on the back that push air in and draw air out of the case to keep the AC DC inverter cool. Inside we have a deck tray made from backboard material available at Home Depot. We have installed a 400W pure sine wave inverter, a 30A MPPT solar charge controller and a 12V emergency LED light on them, also has four vents that allow air to circulate through the top portion of the case as well as through the bottom. The vents keep the batteries cool and allow any off-gas build up from the batteries to pass it through. Here the inverter has a built in automatic shutdown feature that ensures that the batteries are not discharged to a significant level. So it is safely connected to the batteries. Once the deck tray is taken apart, we have 2 55AH AGM sealed batteries that are wired in parallel to a 2 AWG cables to transfer the power back and forth between the batteries. These type of batteries require less maintenance. Also installed a wooden frame with exact dimension of inside of the case to keep the batteries in place and keep them from moving around. To protect all the components we have fuses ranging from ANL 50amp fuses between the inverter and the battery , inline 30amp fuse between the solar charge controller and the batteries. To attach jumper cables we have an option for external heavy duty battery terminals. To connect to an AC float charger we have added a SAE 2 pin port.
    • DIY Video:How to build a Simple Battery Backup Power Station for Emergency Power
      This project goes over the setup of a simple battery bank for your offgrid applications. We use three AGM batteries, and they're about 245 amp hours each.Marine or deep cycle batteries also work. Dont get a car battery.Make sure that the batteries are about same age or they start bringing each other down. The wires are connected through the positive ports and negative ports of each batteries. The positive from the inverter is connected to the positive of the first battery .Negative from the inverter is connected to the negative of the 3rd battery. The battery chargers are from Pros Series DSR.It ramps up the optimum charging voltage.