DIY Video: How to build a Homemade Gravity fed ,Drip Waste Oil Heater for your Garage .Clean and Efficient

    This project goes over the build of a simple gravity drip fed waste oil burner that can be used to heat your shop/garage efficiently.It heats up the garage to about 30 to 40 degrees. Hot air from the center pipe reaches up to 500 degree celsius. Once dialed in, the smoke clears and the burner is stable at 400’C.

    The materials needed for this project are grinder,MiG welder,plasma cutter, scrap propane tank,hammer,enclosed brake disc, steel cooking pan, 4 inch 10ft pipe, bolts and iron rod and temperature sensor to keep track of the heat.

    The footing and the chimney pipe is welded onto the propane tank.Add a pipe right through the middle and weld the retainers for the pan and the legs around the vessel.

    To improve the airflow , we cut bunch of holes around the legs. Also added some more spaces on the legs to keep the temperature away from the concrete floor. We also make a venting hole on both sides at the middle of the propane tank .

    To adjust the temperature, we add 2 7/16 primary holes right at the base above the heating pan. You control the burner by adjusting the input airflow into the burning chamber.

    Don’t make the air holes for the draft on the burner too big but have plenty of holes so that with the increase the temperature and the increase in airspeed, the draft the fresh air can actually get to the burner, and you will get cleaner burn. These secondary holes allow for more oil splatter to leave the burner if any water content is present.

    The drip system is kept open which helps you to check how much oil flow is there and also as a safety precaution. If there is any kind of flashback, it will pop out of here and not go all the way through the the pipe back into the reservoir.

    This whole system is completely serviceable, completely mobile,not bolted down.You can unhook the chimney, the exhaust pipe, remove the drip system pipe and the rest.

    The drip system is made of heavy pipe and a small ball valve that is welded in place at the distance and at a specific height so as to dissipate the heat coming from the burner. Also you dont want the oil to reverse its direction and go back into the pipe.

    With the help of a fans, we increase the heat dispersion. With two fans,one blows hot air away from the wall and the other allows extra air for the burn.It pulls cold air from the floor and allows fresh air intake. Effective heating and keep the heat away from the wall.

    To start the system, we pour the waste oil onto the steel pan and place it under the burner. Make sure you dont have any trace of water in the pan or oil. The oil will splatter out of the secondary holes if there is water.The more you can bring in to the burning chamber,the more it will burn and more it will smoke.

    • How to make a Survival Rope Making Machine at home from easily available materials
      This project goes over the build of a Homemade rope making machine using a simple cordless power drill and some inexpensive materials that are sourced from the local hardware store. Here are the materials needed for this project: Three quarter inch by five inch eye bolts with hex nuts Fender Washers Cut Washers Hex Nuts Plastic Castor Wheels two by two and one by six by six piece of lumber Old bicycle tire tubes Take the board and cut it to length of seven and a half inches and took the first piece and doubled it over the second one and cut them together so that they are exactly the same length. Then I took a piece of two by two and cut it eight and a half inches long. Take large fender washers and position them on the board forming a triangle, you want to do it in such a way so when you add your two by two to the top as well as the bottom, it has similar spacing at the top and the bottom. Put the two boards together, mark the centers and drill the holes. Next step is to build the metal spinning hooks. These spinning hooks are going to be made out of eyebolts which is used as a hook to put the strings on. We take 3 plastic castor wheels and use them as a pulley , connect them together with a small piece of bicycle tire tube so that when one is spun ,all three of them would spin together. We take the 3 eyebolts and push it through the hole and secure them tight with a small cut washer and hex nut. It is locked in place but should spin freely. Put with wheels through the bolts and secure them using fender washers, cut washers and nuts. Take an old used tire tube piece and line it up between the two washers and cut up a piece that is roughly about the same distance as that gap. We loop the tube over the pulley all at once.The Second board is pushed through the bolts over the wheel pulleys.Make sure everything is lined up symmetrically. When we turn one bolt, the belt drives the other two pulleys and they all spin together. As we are running the hook spinner, we are going to need something to hold it at the other end, To make the other end of the mechanism that holds the strings in place, we take six inch piece of common board and eight and a half inches of our two by twos on the bottom to secure it as a base and them we clamp it over a table. The idea is that as each hook begins to spin, the two cords attached to it will intertwine with each other. And then eventually all three of those cords will mesh together to make a nice three stranded rope. As the strands are twisted, it creates tension on the backboard. To relieve the tension, we drill a hole through the backboard and tie the rope to another counterweight rope through a swivel hook that pulls the tension and allows it to rise as the cord is pulled. We also make a rope makers top that will help guide those strands into the beautiful three strand cord. We add two ropes between the spinner mechanism as guidelines and connect it to the back board to accommodate the rope makers top. The idea is that as the tension builds it will glide forward and guide the individual strands into place to form a three stranded rope. We sandpaper the holes on the rope makers top to make it smoother so that the lines won't snag up when they start twisting. We put a wooden knob on the back to reduce the friction so that the rope makers top can slide smoothly. Loop the cords through each of the three hooks on our rope maker machine .Form a slipknot and connect it to the swivel hook. We have our rope machine build complete . To tie and cut of the rope, take a small piece of electrical tape and wrap it around the end where you want to cut it off. Cut The Rope at the back just where the electrical tape ends .
    • DIY Video: Generate your own power by building a portable solar power station.
      This Video shows the build of a portable solar power station for camping, boating, off grid living.Save many thousands of dollars on power bills by generating my own power. In this video I'll share some of the tricks I've learned along the way and show you how to build a fully off-grid solar system on a budget. No need to pay someone thousands of dollars to install when you can do it yourself.This basic setup can be used for boating, camping or scaled up to power your whole house.

      Watch the DIY portable solar power station build video

    • How to heat your Garage by building a Super Insulated Radiant Floor Heating System
      This project goes over the installation of a homemade radiant floor hydronic heating system for the garage. The radiant floor heating uses a pex tubing that is installed along the floor of your garage or room . Hot water is passed through the tubing which radiates the heat out into the room or space. The first step is to figure out what size pex coil tubing and how big of a water heater you would need . Also how many feet of tubing would allow enough heat to exchange into the concrete floor to sufficiently warm up the entire space. The total BTU/hour or heat required will be based on the square footage of your garage or room . We begin by levelling the ground and start laying down a vapor barrier .The vapor barrier is made out of 6 Mil Visqueen plastic PE film .The barrier keeps the moisture from under the ground to rise up to the surface of the floor. We then lay a mixture of sand and packing gravel before installing the two inch extruded insulating polystyrene foam on the floor and the perimeter. Four circuits of 800 ft half inch Pex tubing is stapled down on two inches of polystyrene insulating foam using a pex stapler. The eight tube ends are routed upto to a box from where it is connected to a manifold which is mounted on to the wall. The pex tubing with the supply and return tube is connected to the manifold with the help of a compression fitting . To check if all the connections are OK or if there is any hole or leak in the tubing, connect the manifold to a 100 PSOI air pressure gauge to do a pressure test. Five inches of concrete is then poured over the pex tubing circuits. Saw cuts of less than an inch are made into the concrete to allow for the shrinkage during the curing process. To insulate the pex tubing and to prevent water from entering into the floor, an expanding foam sealant is filled near the junction where the concrete meets the supply and return tubing near the manifold. The heating components of this system are mounted on a 4 X 4 square sheet of plywood. The heater has a rating of 7.2kW . The heater is flow activated which requires a circulating pump to pump water through it which then activates the heater based on the temperature setting. Two 120V fractional horsepower circulating pumps are used , one for running the water through the heater and the other circulates out through the pex loops. The pump has an inbuilt garden hose connector system used for draining. The hot water coming out of the output end of the heater passes through a pressure tank which removes the air bubble with an air release valve and prevents any water hammer to the system. This is further connected to the flow activated circulating pump for the heater with connections for filing and draining the system with the help of shut off valves. The water then comes down to a stainless steel manifold and then flows through the supply end of the pex tubing . The heated water splits into four supply loops at the manifold into the concrete floor. The water then returns back to the return end of the manifold through the other four loops of pex tubing and goes straight through another circulating pump and a Y strainer filter before circulating back to the heater. Two thermometers are connected at the supply and return end of the pipe to know the temperature difference of the outdoing water and the returning water. The flow is controlled by a thermostat and a switching relay that turns on the circulating pump .