How to make a Survival Rope Making Machine at home from easily available materials

    This project goes over the build of a Homemade rope making machine using a simple cordless power drill and some inexpensive materials that are sourced from the local hardware store. Here are the materials needed for this project:
    Three quarter inch by five inch eye bolts with hex nuts
    Fender Washers
    Cut Washers
    Hex Nuts
    Plastic Castor Wheels
    two by two and one by six by six piece of lumber
    Old bicycle tire tubes

    Take the board and cut it to length of seven and a half inches and took the first piece and doubled it over the second one and cut them together so that they are exactly the same length. Then I took a piece of two by two and cut it eight and a half inches long.

    Take large fender washers and position them on the board forming a triangle, you want to do it in such a way so when you add your two by two to the top as well as the bottom, it has similar spacing at the top and the bottom. Put the two boards together, mark the centers and drill the holes.

    Next step is to build the metal spinning hooks. These spinning hooks are going to be made out of eyebolts which is used as a hook to put the strings on. We take 3 plastic castor wheels and use them as a pulley , connect them together with a small piece of bicycle tire tube so that when one is spun ,all three of them would spin together.

    We take the 3 eyebolts and push it through the hole and secure them tight with a small cut washer and hex nut. It is locked in place but should spin freely. Put with wheels through the bolts and secure them using fender washers, cut washers and nuts.

    Take an old used tire tube piece and line it up between the two washers and cut up a piece that is roughly about the same distance as that gap. We loop the tube over the pulley all at once.The Second board is pushed through the bolts over the wheel pulleys.Make sure everything is lined up symmetrically. When we turn one bolt, the belt drives the other two pulleys and they all spin together.

    As we are running the hook spinner, we are going to need something to hold it at the other end, To make the other end of the mechanism that holds the strings in place, we take six inch piece of common board and eight and a half inches of our two by twos on the bottom to secure it as a base and them we clamp it over a table.

    The idea is that as each hook begins to spin, the two cords attached to it will intertwine with each other. And then eventually all three of those cords will mesh together to make a nice three stranded rope.

    As the strands are twisted, it creates tension on the backboard. To relieve the tension, we drill a hole through the backboard and tie the rope to another counterweight rope through a swivel hook that pulls the tension and allows it to rise as the cord is pulled.

    We also make a rope makers top that will help guide those strands into the beautiful three strand cord. We add two ropes between the spinner mechanism as guidelines and connect it to the back board to accommodate the rope makers top. The idea is that as the tension builds it will glide forward and guide the individual strands into place to form a three stranded rope.

    We sandpaper the holes on the rope makers top to make it smoother so that the lines won’t snag up when they start twisting. We put a wooden knob on the back to reduce the friction so that the rope makers top can slide smoothly.

    Loop the cords through each of the three hooks on our rope maker machine .Form a slipknot and connect it to the swivel hook. We have our rope machine build complete .

    To tie and cut of the rope, take a small piece of electrical tape and wrap it around the end where you want to cut it off. Cut The Rope at the back just where the electrical tape ends .





    RECENT POSTS YOU MIGHT LIKE
    • How to Generate Alternative Offgrid Power by building a Homemade Waterwheel Hydro Electric System
      This project goes into the build of a homemade alternative offgrid power generation system using a water wheel and flowing water source like a stream or creek. In order to catch the water from your spring or creek , the first step is to build a small dam. This enables us to produce maximum power from the running water wheel . First, We use a 4 inch pipe to divert the water before starting the construction of the dam. With a solid concrete foundation ,we aim to make a 42 inch dam with 30 inch of head . A six inch 36 inches long PVC drain pipe is installed on the high water side .The dam is constructed using four layer of hollow blocks and quickrete blended mason mix .Try raising the water higher to see how much higher it needs to go before it overflow through the sides. The dam board gates made of deck boards are installed in the middle .The back board and the front boards are spaced apart an inch and three quarters. The dam stop gate made of plywood with dimensions of one and half is inserted between the boards . To get a tight seal a half inch rubber tube is stuffed between these boards. With a 13 and half inch treated plywood and couple of 2X6 plywood side boards, the flume is built. The side boards are glued to the plywood base using adhesive sealant and screwed with exterior grade screws. To resist twisting and to keep the width of the plywood steady , four cross spacers are installed on the flume board. To divert the water without having to drain the dam, we make a small trap door in the flume near the opening . The trap door is made seven inches back from the face of the dam. The door is supported by a flange around the back and a stainless steel hinge. The flume is installed on the creek with the help of rebars and supporting deck boards. The rebars are attached to the boards using u-bolts and drill bit. Three more subsequent flumes are attached to each other. The gap between the flumes are sealed with poly foam caulk rope. The waterwheel is made out of a section of 55 gallon HDPE drum . The blades are made of 4 inch PVC drain pipe. The blades are curved so that it retains most of the water making it more energy efficient. 24 blades are attached to the drum using 16th by half aluminum angle pieces. A three quarter inch jack shaft from an old go-kart is used as the drive shaft. This is supported at both ends of the wheel with a help of pillow block bearings. Two 28 inch Circular end pieces made of plywood is bolted along both sides of the barrel using a 6 ten inch long half by thirteen carriage bolts to make the wheel build complete. Two square collar blocks are mounted on to shaft to center them. The holes are larger than the shaft so that the wheel can be adjusted to get the runouts reduced.To center the waterwheel and to adjust the runout of the center shaft , we use four blocks and adjustment bolts around the center block like a four jaw chuck . To install the water wheel securely, a support structure made of 2x4 boards are installed near the end of the flume. The water wheel is secured on these support boards with the help of couple of swivel block bearings. We use an adjustable Unistrut to mount the bearings,sprockets and the motor. This can be adjusted for chain tension as well. The Unistrut will stand vertically on top of the cross support that is under the flume.The Unistrut's are mounted onto the wheel on both the sides with help of bearings and T-nuts. A Number 35 sprocket with 72 tooth is mounted onto the center wheel shaft. This sprocket is connected to a half shaft with 11 tooth sprocket with the help of a size 35 go kart roller chain. A Permanent Magnet Brushed DC motor mounted on 2x4 board is further connected to this shaft via another sprocket. This gear system has a ratio of 30.86:1 Using unistruct angled brackets, the wheel is mounted onto the support board near the flume. The wheel is positioned near the flume in such a way that the water where it meets the wheel is exactly at the top. The charging system consists of a 12V DC emergency standby battery, MPPT charge controller, 300W sine wave inverter . The connection from the water wheel DC motor goes to the charge controller.The charge controller is also connected to the battery. Finally the inverter is connected to the battery which is further connected to a load. To make this charging system secure, make sure to make fuse connection between the components. All these components are mounted on a temporary wooden board. https://www.youtube.com/playlist?list=PLDda5L4aJUB-IuU3SWstKewFvzfv3wJGI
    • DIY Video : How to Repurpose an Old Water heater into a Foundry Furnace. Easy to build,Heat up quickly and efficient
      This Video series shows how to Repurpose an Old Water heater into a Foundry Furnace.This is a great way for the do-it-yourselfer to build a foundry furnace that will last a long time, heat up quickly, be fuel efficient, easy to build, and not break the bank!.The materials needed for this build are Old Water heater,Non-firing refractory,100HT ceramic coating,Ceramic blanket.

      Watch the Old Water Heater Foundry Build Series here

    • How to build a Simple Homemade Bandsaw Mill from Old Car Wheels
      This project goes over the build of a simple Bandsaw from old car wheels .Car wheels are big and heavy, but in many ways, they are ideal for bandsaws. They are available everywhere cheaply. They have a rubber tire for the blade to sit on, and they have excellent bearings. Take apart the brakes, the backplate , bearings and the stub axle out of the housing. Weld the stub axle onto an off cut of scaffolding. So we now have two wheels, spinning on the ends of two straight lengths of steel. We take some scrap angle iron pieces and make a rectangular frame for the mill. This form as the base of our mill. In order to make the sliding mechanism, we take a scrap pipe and try to fit it onto a square iron pipe so it can slide in and out smoothly. This will be used for all adjustments. This is welded onto the frame. A Steel plate is welded onto the sliding bars. This is for the engine to sit on. The engine will drive one of the car wheels We mount the 11 HP Petrol Engine to steel plate and the tire is connected directly to the engine shaft through a drive belt. The drive wheel is bolted on to the frame ,also added a lever for the engine mount which will act as a sort of clutch, tightening and slackening the belt when necessary. We add two more pipes on the bottom of the frame and slid them to the support platform of the second wheel made from the same square box iron and some short sections which is part of the blade guide. The second wheel has to be adjustable in a few different directions and has to be lined up with the first wheel so the blade stays on them both without running off the tires. To adjust the tension on the blade by moving the wheel away from the first one, we use a bottle screw. The blade guides are made from cheap bearings. They needs to be adjustable so that the saw can cope with logs of different sizes. The blade guides help keep the blade straight as it goes through the log and also stops the plate being pushed off wheels The band saw has to go up and down so that it can cut planks from a log. We make a simple frame to hold it. It has to fit inside vertical pieces of angle iron on the saw. The support frame is bolted onto to the saw by using a bracket which grip the uprights. Couple of barn door pulleys are bolted onto the top of the support frame and the mill frame. A trailer winch is bolted on to the middle of the support frame. Using a 3mm wire and winch-pulley system, we can move the wheel frame up and down. Two short pipes are added at the front and these hold up a guard which can be taken off when we need to get at the belt or the blade. If the blade snaps, the side guards should make sure that it heads down towards the ground and not up to the ceiling. The saw is stationary and the log is moved through it using dolly trailers or rails. https://www.youtube.com/playlist?list=PL3_dJayH6e6ibBd5sA6WgXO99zf2zBsUe