How to build an Emergency Waste Oil or Used Vegetable Oil Candle from Old Nail Polish Bottle

    This project goes into the build of a simple and inexpensive waste oil/ used vegetable oil candle from an old nail polish bottle. You can burn motor oil ,vegetable oil, olive oil or you can also use lamp oil in these types of candles.

    The first thing your need for this oil candle is a reservoir to hold the oil in. Here we use a finger nail polish bottle. Next , a length of 100% cotton yarn is needed that is slightly longer than the length of the bottle. Another requirement is a one inch square piece of aluminum foil.

    The first thing you need to do to start this process is to take the bottle , clean it completely and fill it with your source of fuel like veg oil, waste motor oil, corn oil, olive oil . When you are pouring the oil, you don’t want to go all the way up to the top of the bottle. Leave small amount of space at the top of the bottle.

    Take the aluminum foil and fold it length wise in half .Puncture a small hole in the middle of the foil . Through this hole, the cotton wick is pushed through.

    Lower the wick into the bottle and fold the aluminum foil around the neck of the bottle. This acts as a lid . Make sure that everything is folded down nice and tight around the bottle.

    Check the candle and see if this wick is wet. And if it is not , turn it upside down for a minute . The oil will then come into this wick and saturate it. Be careful that your aluminum foil doesn’t fall off. If your cotton wick is a little bit longer, pull it up a little bit . This exposes the wet part of the wick. Take your scissors and cut the wick down just a little.

    Light the candle . When you first go to light them it takes a minute because you have to get everything warmed up. Let it burn a little bit. Make sure to not use a thick layer of aluminum foil for the lid. The aluminum foil will heat up and cause problems.



    RECENT POSTS YOU MIGHT LIKE
    • DIY Video: How to build a really efficient Portable Multi Purpose Ammo Box Wood Stove
      This project goes into the build of an efficient portable ammo can wood stove that can warm your space, act as a cooking stove, baking oven and an alternative for ground fires at camp sites. This ammo stove is compact and doesn't take up additional storage . All the basic components used in this stove are modular and can be stored inside the stove when not in use. These components are easily available in your local hardware store. The basic components needed to build this stove are as follows. The ammo box called the "fat 50 "is purchased from an army surplus store for $30 , the titanium stove pipe for $100 , the metal for the control dial and the door is salvaged from old barbecues. Rest of the basic tools needed are grinder, blow torch, hack saw ,rivet gun and a drill press. Not only you can use wood logs, paper, twigs but it also runs on wood pellets. The system has a gravity fed hopper that feeds the pellets intermittently for consistent heat over a longer period of time. For maximizing the burn, a divided combustion chamber is used. This forces the burn to go around a sealed baffle before it exits out the stove pipe providing less smoke and retaining more heat. A thick steel plate is used as a cook top which is rescued from an old barbeque . This plate absorbs the heat for cooking and is removable thereby protecting the stove top. Additional feature is a baking oven underneath the stove. The first step to build is simply removing the lid of the ammo can stove which just slides of the hinges. Remove the rubber gasket on the back side of the lid using a plier . This rubber gasket is replaced using 3/8th inch stove rope. This provides heat resistant seal from smoke. Remove the handle by drilling along the spot welds on the sides of the handle just enough to weaken them and pull it using a screwdriver . Two holes of three inches are drilled at the top surface of the stove . These are done to fit in the titanium stove pipe and for the gravity fed hopper system. We use a three inch propane fuel cylinder tube to make a pipe collar as a guide to trace out the holes. These pipe collars acts as hopper support for gravity fed pellet mechanism and for securing the stove pipe. The hole for the first pipe is about five and half inches away from the door hinge and the second one , one and half inches away. The holes are then cut using a jigsaw. The flanges in the stove pipe collars are made by securing them against a wooden fixture and bent them using a hammer. The edges are heated with a torch to anneal the metal for hardening. Before inserting the stove collars into the lid, the metal sheet inside the lid was removed. Using fiber glass cloth, a smoke seal is made around the collars. The collars are then inserted and the metal sheet is reinstated with help of some stainless steel rivets. A adjustable damper is installed inside one of the collars .These damper provide control to both burning speed and fire intensity. Also the damper in a closed state also acts a base for a steamer or a boiler. The damper is made using a thin steel cut out of a disc , the size of the inside pipe diameter. The shaft from a barbeque skewer is inserted along slots drilled in the disc holding them underneath the collar. Inside the combustion chamber ,we have two dividers installed. One divides the combustion chamber and the bottom one separates the oven from the stove . The top divider acts as an inner wall . The combustion has to travel around the corner and then go outside through the stove pipe at the end. This collects more heat and has less smoke build up inside. The side door openings are four inches high and three and three eighth inches wide. The door is made out of thick steel plate which was salvaged from an old barbeque. The door has three holes for the air intake and it is supported by a regular door hinge. A small circle metal piece at the front regulates the amount of flow that goes into the stove. A secondary burn system is introduced inside the stove so that the air coming into the upper part of the combustion chamber where all the smokes ascends gets reignited . This drastically improves the efficiency of the stove. Here we use couple of half inch black iron pipe that is connected with 2 90 degree elbow and an end cap. Holes are drilled on the pipe so that the fresh air is introduced into the chamber. A hole at the side of the stove is made the air intake. The pipe is inserted into the chamber and secured in place using a coupling and a spacer. A 3 X 4 inch duct adapter is used as a funnel for the gravity fed hopper system. To make this efficient , we add a small cage made of door basket inside the chamber so that all the pellets wont drop suddenly to the bottom. The cage is made from the metal rods from the basket. The rods are spaced 8mm apart and put straps across both sides and secured it using rivets. To prevent the overflow of pellets inside the cage, a two and half inch tailpipe is placed at a specific distance below the hopper. This helps the pellet build up in the cage but not overflow. Now there is a sustained release of pellets at all time for a consistent burn. Stainless steel tent stakes are placed at the bottom of the stove riveted to a metal plate. This prevents the bottom from burning out and also improves air flow. Also acts as ash collector. To use this stove as a light source, we make a small window out of half mm natural mica glass. We use a fiberglass cloth to form a seal around window. It is held by green painters tape. After positioning the glass, spacers are added around the edge . These metal strips allow for the mica to expand and contract. Another metal frame is used to hold all these in place. The portable stove pipe is made out of titanium rolls. The titanium prevents corrosion and also distributes the heat efficiently. To make a long cylinder without denting the foil, unroll the film across the ground, roll it small enough to get the clips on ,spacing them evenly along the length of the pipe. https://www.youtube.com/watch?v=t3XOLLg8wn0 https://www.youtube.com/watch?v=CskimuvL4ZI https://www.youtube.com/watch?v=TsHSfZ-nwws
    • How to build your own DIY off grid / grid down Solar Power Back up system from scratch
      This project goes over the build of a Solar Power Grid Down Backup System to generate your own alternative power.A great way to utilize renewable energy as a backup source of power. Whatever may be the reason , may be to offset electricity bills or for self reliance to provide when the grid goes down, a solar backup system is simply a great way to provide alternative power to maintain a lifestyle of reasonable convenience. If the grid should go down, I can have a freezer, power lighting, pump water, maintain communications, use tools, and charge every little device I have from flashlights to kindles. This Off grid Solar Power System is composed of 5 components. Solar panels to generate the power, a charge controller to charge the batteries, the batteries to store the energy, the inverter to provide AC to the household items you wish to power. Also you need a Kilowatt meter. The kilowatt meter measures two things you have to know how much energy your devices draw at any given moment, and how much power they consume over time. Here we use 100 watt monocrystalline panels, a 40 amp MPPT charge controller, a 1000 watt pure sine wave inverter and to store the energy, 446 volt golf cart batteries totaling 470 amp hours. First you need to size your system by figuring out how many devices you are going to want to run at the same time. This will determine the size of your inverter, the inverters function is to take DC power from the batteries and converted to AC power for use with household appliances. If I have 1000 watt inverter, this means I can run up to 1000 watts worth of devices at the same time. Once you have evaluated every device that you feel that you are going to need, should the grid go down, you are gonna have a good idea of how much power you need to generate each day. The battery bank consists of four, six volt, Duracell SLIGC 125, golf cart batteries connected in series. Golf cart batteries are designed to deliver a lower amount of power over a longer period of time and then recharge quickly. When picking a spot to locate your panels, you have to consider that the sun will be lower towards the horizon in the winter, and closer to directly overhead in the summer. Building a system that actually tracks the sun would be best as the panels are always pointed directly at the sun. Also mount your panels as close as possible to the batteries. This is because the longer your wire run, the more energy is wasted due to resistance. You also need to select the proper gauge wire to transmit the power from the solar panels to the batteries. Between the panels and the batteries is the charge controller ,it controls the charge of the batteries and make sure that the batteries get the proper voltage that they need and that they don't get overcharged. Here we use an MPPT Solar Charge controller. If your solar panels are wired in series and connected to an MPPT charge controller, the voltage adds up ,thus giving us enough voltage to charge the batteries. An MPPT charge controller can charge your batteries nearly the entire time The sun is out. If your panels are far away and you want to save money and wiring, then the MPPT charge controller is way more efficient than PWM. The first step in making your solar system safe is making sure that there's an automatic and a manual way to disconnect power in each segment of the system. Starting right here at the battery box we have a 300 amp manual switch to kill the power from the batteries to the inverter as well as a 200 amp fuse that will blow automatically. Another component to the safety is the grounding. Grounding your system is quite easy to do. So get an eight foot grounding rod and drive it into the ground. Then pick up some copper grounding wire, some lugs and connect the frames have all the panels in any metal components in the system including the charge controller and the inverter.
    • How to build an DIY 12 V Portable Water Pump Box with filtration system for Outdoor Survival / RV
      This project goes into the build of an offgrid portable water pump and filtration system that can turn any water from your creek,lake,river into safe and clean drinking water . This 12V portable system can be powered by solar or from your car directly and is ideal for camping , RV or outdoor survival enthusiasts. This system enables them to pump water from a fresh water source, filter and then store or use in case of emergency survival situation. The materials you need to build this portable filtration system are as follows. A tactix storage box to lodge the water pump,inlet and outlet hoses, an inline water filter or twin carbon 0.5micron filter, pex pipe, garden hose pipes, 12mill barb strainer,rocker switch ,12V Shurflo water pump with the flow rate of 11 litres per minute, 50 amp Anderson plug and 10m heavy duty wire ,basic tools such as wire cutters, long nose pliers, solder. The first step is completing the wiring for the water pump inside the tactix tool box. The rocker switch , the Anderson plug and a 7.5 Amp inline fuse are wired. The 12V rocker toggle switch is mounted at the center of the box lid. The power input plug or the Anderson plug is mounted to the left of the switch. This input plug connects to the car battery or a solar battery. The positive red wires from the switch is connected to the Anderson plug through an inline fuse .The negative black wire from the plug goes straight to the switch. The remaining wires from the switch is then connected to the water pump which will be installed later. The wires are covered with corrugated split tubing to ensure that it is protected and safe. The filter strainer is installed on the inlet side of the pump using an elbow, thread tapes. The strainer will filter out any unwanted debris before it goes to the pump. Couple of holes are drilled into to the side of the box where the inlet and the outlet hoses will connect the water pump. The male fitting are attached to the holes before the pump is installed. The pump is placed inside the box and mounted securely in such a way that the elbows are facing towards the two holes for the exterior hoses that was just made at the side of the box. Once the pump is mounted ,we connect the red and black wires coming from the switch to the positive and negative connections of the pump. The wires are once again covered with corrugated split tubing for safety. To connect the pump with the hose outlets , we measure the distance between the outlets and the pump and connect two pex pipes . Heat was applied to the pipe for bending and moulding them to connect the outlets. The 10 metre 50 Amp Anderson plug extension heavy duty cable wire is connected to the power source .Here the power draw is from a car battery. The other end is connected the input anderson plug on the top side of the box. The inlet hose with the strainer attached is placed sitting midway into the water source .The other end of the hose is connected to the intake pipe coming from the pump inside the box. The The other hose is connected to the outlet pipe coming from the water pump inside the box. At the end of the hose , we connect an inline water filter or a twin carbon filter . The carbon filter ensures that there is no sediments or debris inside the water and also helps to eliminate bacteria and other contaminants. https://www.youtube.com/watch?v=bLiTn8YacWo