How to build a Homemade Water Powered HHO Dry Cell Generator

    This project goes over the build of a Homemade 19 Plate HHO Dry Cell Generator . The HHO generator works by the principle of electrolysis. Water is made from two types of atoms hydrogen and oxygen. Electrolysis is a method for splitting water into hydrogen and oxygen. Pure water isn’t electrically conductive, so we add either sodium hydroxide or potassium hydroxide to it to make it conductive.

    To make the electrolyzer , we need electrode plates, neutral plates, gaskets, front and back plates with some metal reinforcements . The electrode plates and the neutral plates are made of 304 stainless steel sheets, the gaskets made from one eighth inch neoprene rubber sheet. The neutral plates are stacked in between the positive and the negative plates .The empty spaces are filled with neoprene gaskets. Water comes into the electrolyzer through the input tube and goes out as hydrogen and oxygen through the output tube.

    When electricity is applied to the electrodes, the chemical reaction occurs, which causes the hydrogen from the water to go to one plate and the oxygen to the other plate where there they form bubbles of gas .Now the electricity wants to jump from the negative plate to the positive plate but since we have neutral plates between them, they divide the original voltage. This help in efficient HHO gas generation.

    The plates are made of 12 X 12 .24ga 304 stainless steel sheets that is cut into four 6 inch pieces using tin snips . The plates are stacked together and holes are cut top and bottom for where the gas and the water comes in and leaves. To hold the plates together use seven inch cutting boards with metal support frames at both ends.

    To differentiate between neutral plates and the electrode plates, we cut both corners of the neutral plates and only one corner of the electrode plates. So this way we can run a bolt from the positive to the other positive and negative to other negative end.

    To assemble the cell, we place onto the base cutting board, the positive electrode plate and stack the neutral plates and the gaskets on them one by one and enclose them the negative electrode plate and the base board .Secure them with bolts on four corners. The electrode plates are then connected to each other with a thin gauge wire.

    The next component for the build is some sort of a water reservoir. The reservoir is nothing more than a bottle that’s going to hold your electrolyte, which is distilled water and either sodium hydroxide.

    The water reservoir is connected to the cell using two three eighth inch tubes, one going into the cell and other coming out . The other component that you’re going to need to build this HHO generator is some kind of a power supply that can generate 12V 30amps . This can be a car battery hooked up to a trickle charger, an old computer UPS supply or a 12V battery used for solar panels. The electrode cells are then secured on a wooden frame along with the power supply and the water bottle reservoir for easy portability.

    Next you need a bubbler .This takes the HHO gas coming into it and diffuses them and gets broken into smaller bubbles. As those bubbles travel up the column of water inside the bubbler, it helps to filter out the sodium hydroxide or potassium hydroxide vapors .If your bubbler is set up correctly, then after being diffused and traveling up that column of water, it tends to get rid of most if not all those vapors.

    To add a safety feature ,we drill the top of the bottle , remove the lid and cover it up with a plastic foil pressure membrane . If the pressure inside the bubbler increases in case of a flashback ,instead of the jar exploding, the pressure is able to escape through the membrane .



    RECENT POSTS YOU MIGHT LIKE
    • How to build a Homemade DIY Geothermal Heat Exchanger to Cool Your Garage
      This project goes over the build of a Geothermal heat pump that takes the hot air in your garage and cool it down by transferring that heat into water .The cold water is pulled out of the ground through a shallow hand dug well and send to a heat exchanger inside the garage . A fan attached to the heat exchanger blows out the cold air into the garage . The heat exchanger absorbs the existing heat inside the garage . The warmed up water is then removed through an exhaust pipe. Just a few feet down the earth is a consistent 55 degrees, summer or winter. Water at that depth is about the same temperature. To harness the cold water down below, we dig a shallow well. To do this we use a post auger and a 3 foot long well point that is attached to a 10 foot three quarter inch pipe using a drive coupling. We start by digging a hole using the post auger till the water table is reached and then start driving using the well point for additional two to three feet until it is submerged under the water table. A two to three foot trench is dug from where the well is installed to the garage . A One inch poly pipe is connected to the well pipe using a barbed coupling and is buried inside the two foot trench all the way to a well jet pump .The trench is dug down at least two feet until you hit some hard pan clay that is about where the temperatures begins being more constant. This keeps the pipe cool under the earth. The other end of the poly pipe coming out from the trench is connected a 1/2 HP Flotec Shallow well jet pump . The pump can be powered by a solar panel. The pump is kept outside the garage as it generates a lot of heat. If it is kept inside the garage, cooling effect from the water will be undone by the heat generated by the pump. The output of the pump is connected to a three quarter inch copper pipe inside the garage. It is then further connected to a water pressure tank with the help of a brass tee and a union. A relief valve is also attached to the tee to empty the water tank if the pressure gets too high. A water pressure tank is used prevent the pump from failure .It also acts as a buffer storage. The other end of the brass tee is connected to two pipes. One pipe goes outside the garage to a faucet and the other pipe is connected to a radiator that acts as a finned tube heat exchanger. The heat exchanger captures the hot air surrounding the garage and stores the heat into the finned coils within the radiator .The heat is transferred to the water flowing through them . An exhaust line from the radiator carries this hot water to outside the garage. Two flexible hose pipes connects the input of the heat exchanger to the water tank and output to an exhaust pipe. A box fan is placed in the front of the radiator to blow the cool air . The fan can be powered by Solar panels. Once the water starts running through the radiator , we start the fan https://www.youtube.com/watch?v=IRLLbmcnYjA https://www.youtube.com/watch?v=bCOeMIQLwgc
    • How to build a Simple and Efficient Homemade Water Distiller for cheap .Great for everyday use or in emergency/off-grid situations.
      This project goes into the build of a homemade DIY Water distiller that can purify dirty and contaminated water and desalinate salt water into clean drinking water. The total cost of this build is about sixty dollars. For distilling water, you need three thing - water, a source of heat, and some sort of apparatus that will allow water to boil into steam and then recollect that steam , condensing it back into usable water. A water distiller basically needs to do two things, it needs to boil water to create steam, and it needs to capture that steam in a way that allows it to condense back into water. The materials you need to build this distiller are six quart stainless steel pressure cooker, 20 foot three eighth inch copper tubing, two gallon bucket, jb weld, zip ties, flat bar, five sixteenth inch silicon tubing, mason jar. The first step is to boil the contaminated water in a tea kettle or a pressure cooker. Here we use a six quart stainless steel pressure cooker. Since the boiling water must be directed to the condenser, something with a sealed lid of some sort is needed. The existing pressure valve of the cooker is removed and replaced with a barbed fitting .A small rubber O ring gasket is used to tighten the new fitting. Next step is to make the condenser. The purpose of a condenser is to give steam the opportunity to cool back down enough so that it turns back into liquid water. The condenser is built using a 20 foot three eighth inch copper tubing. This is reformed into a tighter and taller coil such it will fit into a two gallon bucket. Because it needs some sort of support to avoid having the coil collapse under its own weight, a flat bar bent into a U shape is placed under the coil. A small cross piece is attached to it at the bottom using JB weld. The coil is attached to the punched bar with some zip ties. A hole is drilled near the bottom of the bucket to allow the copper tube to drain out the condensed water . The coil is placed inside the bucket carefully and the tail end of the coil is pushed into the drain hole . The condenser is connected to the pressure cooker with a 5/16th inch silicon tubing. A similar silicon tubing connects the bottom of the condenser to the clean water receptacle like a mason jar. When distilling water , cooling the steam back down is very important. The coil itself will cool some of that down. But that alone isn't enough at this scale. It will end up losing a lot of steam through the bottom of the condenser because not all of it has been able to cool and condense by the time it reaches the bottom. An efficient way is to add a cooling element to the condenser. Filling the bucket with ice water will increase the efficiency and water output by a lot because it will cool the copper tubing much more than air alone. Doing so had an immediate effect and all of the escaping steam condensed instantly to liquid water. By periodically adding cold water through the distillation process, it practically eliminated all of the steam waste coming out of the condenser. The gap around the copper tube where the hole is drilled is not sealed. This is because of two reasons. The first being able to easily remove the condenser from the bucket for cleaning and maintenance. The second reason being it acts as a drain. The boiling steam causes the copper tubing to get very hot. Because of this, it heats up the cool water very quickly and this drain makes it convenient in that the water will drain out before it gets to that point. In a survival situation , set the condenser over a larger bucket to collect and reuse the cooling water as it drained out and not simply let it go to waste. https://www.youtube.com/watch?v=PrfDskR2I5g
    • DIY Video : How to build a Homemade Mini Hydrogen Generator / Water to fuel Generator from simple Household items
      This video shows you how to build a Mini Hydrogen Generator / Water to fuel Generator using materials that is easily available around your house.This is achieved by Electrolysis which is an electro-chemical process whereby which hydrogen and oxygen are disassociated from water.By means of electrical influence using simple water one can get gas, and gather in into a special container and use this gas (hydrogen) for power supply of engines or other appliances.It is preferred not to use salt as electrolyte it will release chlorine gas.You can use sodium hydroxide, which can be bought as a “drain opener” at lowes or home depot, you could probably use any type of hydroxide though.

      Watch the DIY Homemade Mini Hydrogen Generator Build Video