DIY Video : How to build a simple Off Grid Refrigerator using a 5 gallon bucket . No Ice Needed !!

    This project goes over the build an off grid survival fridge using a five gallon bucket . It has a peltier cooling module on the top. So no need of refrigerant or ice cubes. The materials you need to build are as follows. A 12V 12A Thermoelectric Peltier Refrigeration Cooling System unit from Amazon, a 5 gallon bucket , 4 gallon Styrofoam liner from Home depot.

    This refrigerator works by the principle of peltier effect. The Peltier effect shows that a temperature differential is created when a DC current is applied across two different materials .The peltier unit is made of using two thin ceramic wafers with a series of n and p semiconductor materials sandwiched between them. The ceramic wafers add rigidity and provide the necessary electrical insulation for the module. The n type semiconductors have excess electrons, while the p type have a deficit of electrons with one n and one p making up the junction couple that creates the thermoelectric effect. When a DC current is applied to the circuit, the thermoelectric module can work as a cooler or heater depending on the direction of the current. A thermoelectric cooler or tech transfers heat from one side of the device to the opposite side against the temperature gradient creating a cooling effect.

    We use heat sinks and CPU fans on the peltier chips to radiate and lower the heat generated on the hotter side and move the cooler air into the bucket from the cold side. The peltier setup in this build uses two 12V 92mm fans on the hotter side glued to a large 200m X 100mm Aluminum heat sinks, two 12v 5.8amps peltier chips are glued under two 40mm heat sinks using thermal paste. 2 40mm fans are also attached to the heat sink.

    The Styrofoam liner is inserted in to the five gallon bucket . Two small rectangular cuts are made on the lid of the liner so that the heat sinks fits inside there and gets good airflow around the edges.

    We cut a rectangle on the top lid of the bucket to allow the peltier module to sit in. Small vent holes are drilled on the sides of the lid using a standard quarter inch drill bit so that no hot air gets caught between the bucket lid and the Styrofoam lid.

    Cut a small notch in the bucket using tin snips so the wires from the peltier units will come out without getting pinched under the lid.

    You can hook this unit to 100 watt solar panels straight , 12 volt deep cycle battery, 12 volt transformer to the wall, or you can use your car CIG lighter. This unit can drop the temperature inside the bucket from 81 to 47 degree Fahrenheit in minutes.

    • DIY Video :How to build a Wood Stove that runs a generator, produces gasoline,runs a fridge and act as a water heater at the same time
      This is a wood powered gasifier stove that produces gasoline runs your generator, runs your propane hot water heater, heats hot water for you all off the grid. A simple design of a mini gasifying woodstove prototype here you've got some open latches, open up the door, the doors got the baton handle so it naturally stops on the downfall Inside the firebox, I've got a gasification style system built in there.One of the key things about a gasifying woodstove is that not only can I run it in a typical gasification wood stove manner, heat my home. But if I reverse that action with a fan and a draw system underneath the stove, with the ability to shut off the flow out the chimney pipe, and then draw down underneath the stove, reverse the action of the system, I can produce syn gas that can go outside and into a generator. This system has little latch up here at the top drops open so you can get in there work the material around.By actually pulling the little latch out and the bottom of the main gasifier inside of there to shut it and rotate it locks into place .It is actually a dump plate on the bottom of the main gasification chamber so that all the ash and all the coal that's not burned can dump out of the system into a tray below. A secondary burn system with two layers of stove pipe, one smaller inner diameter stove pipe and one larger one is made for a better burn to take place with fresh air inlets right there in the chamber. The outer sleeve stops below the bottom allows air to travel up in between rise up to the pipe.There is a set of burner holes that makes sure to mix fresh oxygen that creates a swirl in there and helps burn any leftover syn gas in the production system. So there's no smoke coming out of this in the end. Inside the woodstove is the inner chamber holds all your material, it gets hot and then creates an airdrop between this outer wall and the inner chamber wall that airdrop comes out these holes mixes fresh oxygen into the top of the system with the smoke and burns it. The bottom holes allow air to dry in from the bottom to complete that burn as the material burns down to the bottom. It also works slightly as a venturi system as air is drawn up these walls towards these holes, creates a vacuum down here at the bottom holes and pull some of the smoke out a downward draw into the system and pull some of it into here helping mix some of the smoke With the air and will swirl it so it'll burn cleanly. The single air inlet hole is used to pull the smoke out of the bottom to reverse this process to put syn gas out of this stove outside into a generator. There is inner set of holes in the bottom of the stove pipe.This helps mix air between the walls.The air gets drawn up between the wall since the inner pipe is longer than the outer pipe which mixes fresh air and completes the secondary burn to make sure there's no smoke coming out of this pipe. This is gonna be the bio crude oil production system here which is basically another term for a creosote that you produce from syn gas production, otherwise known as gasification production. It's got just a single pipe rolling out of the backside of it which is connected to a creosote collection container. As this gas starts to cool, it's going to come up to here it's going to work its way up hill, as it does so the hydrogen inside of the gas will be the lightest of all the gas is traveling uphill and definitely make it over the top much of the creosote we built re drip down into the second collection container here. Now the rest of its gonna go up cross through the pipe here and come down to a condenser The reactor shown here is made of two of five gallon steel cans.I cut the top off of one and the bottom off of another and slid them over each other. So they make a really long slide seal over each other one pipe, as you can tell here, welded in. With an elbow, it's a one inch pipe coming out of the back of they're welded in with an elbow. The downward slope of the pipe force the smoke to release as much of this crude as it possibly can. Because it's actually wanting to go uphill, which would be easy to smoke not going to cool real quickly. by forcing it slightly downhill, we're forcing a lot of that heat energy out, making sure it's releasing a lot of that, let's call it creosote or bio crude. It also allows for the creosote to roll down the bottom of the pipe into a container. The gas moves through a reduction point which reduces the pressure.The gas gets refined and reduced slightly in volume through the system. Hydrogen, carbon monoxide and all the rest of the lighter gases are going to easily flow up this pipe through thermodynamic pressure. Now you've cooled a lot of that gas by running it downhill, trying to bring in into this lower container as much the second grade creosote as you can, or biocrude. Now by running it up hill again, you can really force all the heavy hydrocarbons and other elements inside of this to focus out of the hydrogen gas and the carbon monoxide. This is a downhill pipe that's going to go anti the direction of natural thermodynamic processes that'll help condense out or precipitate out some of the oils at a much faster rate than it would be if that pipe was going the natural thermodynamic flow direction.The first catch is going to be the heaviest and thickness of the current Crude oil. It goes down that pipe from a reduction point here into the secondary catch.This comes up the hill here at the lighter gases not yet condensed, rises across loses a lot of energy and now is once again restricted into a quarter inch copper gas pipe into a 5 gallon water tank with a 20 loop condenser coil inside . The pipe out of that tank runs into a one gallon pickle jar. The next pipe comes out of the top of the jar, we're not actually trying to put it down too far because you don't want to bubble and once it starts to fill with crude oil, you just want to grab them the lightest of the gases, the hydrogens and the nitrogen, carbon monoxides and others that are still left within this system you want to grab, grab that right off the top. Now it comes up this pipe here goes through the T and once again we have a secondary condenser that this goes through now it's about four or five loops going through there, comes out through there. And that's where the liquids gonna condense from this condenser that's where it's going to be caught. The liquid will be flowing, dropping the jug and the lighter Smoke will continue on now down the pipe. The result of the bio crude oil project collecting 4 grades of oil.So the next step of this project now is to put this all through the refinery, which will actually be connected inside the woodstove that made all of this. So in the end, what we'll have is all the liquid being produced the crude oil once again, flow back to the woodstove go through the refinery out the refinery tower, and on the other side, we'll have a high grade fuel to use in any engine.
    • How to build a Homemade Off grid Solar Powered Water fueled Air Heater and Air Cooler using an 8 X 8 heat exchanger and a car radiator fan
      This project goes into the build of a homemade water fueled radiant Air heater / Air Cooler that can blow cold air or hot air into your room or space using a heat exchanger and an old car radiator fan . This system can pump out cold air at 1500 CFM with the temperature reaching 55F and heat output at almost 170 F. The entire system is powered by a 100W Solar Panel and costs around 60 to 70 dollars . The major advantage of using this cooler is that it doesnt add any humidity to the air. The materials you need to build this Cooler/ Heater are as follows. Standard bilge water pump or aquarium pump or 12V DC fan for solar, seven inch 12V 80W car radiator fan, 10 X 12 piece of plywood, a couple of eleven inch 2 x4's, 8 X 8 heat exchanger, one inch PVC tubing , a couple of hose barbs with coupler , a tub to hold the ice or hot water . A 12V DC heating element can also be used to warm up the water The first step is building a frame to hold the heat exchanger and the car radiator fan together. This is done by a taking couple of 11 inch 2 X4 's and mount them parallel to each other on a 10 X 12 inch piece of plywood. A hole is cut on the plywood to place the car radiator fan . The heat exchanger is attached on the back side of the fan just between those two eleven inch 2 X 4's.The heat exchanger is rated for over 25k BTU's and covers about 1000 sq ft that can heat or cool an entire living space. A tub containing Ice cold water or hot water is used as a source of heat or cold . The Water pump submerged into the water source is connected to the inlet tubing . This pumps the cold or hot water into the input of the heat exchanger . The car radiator fan is powered on using the 100 W solar panel and the hot or cold air radiates into the room or space. The water returns back into the tub through the other tubing . The solar panel is connected to a speed controller that is further connected to the radiator fan to adjust the air flow. The 200gph water pump with the half inch pipe is connected to the inch pipe main tubing using half inch barbed to inch threaded and inch threaded to inch barbed and a threaded PVC coupler. To make the hot water , we use a 150W DC Water heating element . The heat element is connected at the base of the tub or barrel . This unit is powered by a solar panel . You can use an AC powered immersion water heater if there is no option for solar. A 100W Solar panel is powering the 80W Car radiator fan and 12V 350 GPH Bilge pump that is used to pump the water to the heat exchanger and back . It also powers Heating element if you plan to heat the water this way. Another way to heat the water is using a 50 ft copper tubing. The water is pumped through the copper tubing using a small pump and a 5W Solar panel and heat it up. The hot water is then passed through to heat exchanger .
    • DIY Video : How to build a Homemade Atmospheric Water Generator . Produces/Extracts Distilled Water from the air
      This project goes over the build of an DIY Atmospheric Water Generator that distills water from air. This unit is made of aluminum and copper components so it is water safe and is drinkable. The water essentially is just pure distilled water just as clean as if it is distilled from a stovetop distiller. This setup works well in hot humid weather. Also acts a dehumidifier. The materials you need to build this project are quarter inch copper tubing, soup can, half inch PVC pipe, 12V DC aquarium pump, aluminum foil, clear vinyl tubing, aluminum tray for collecting the distilled water ,small styrofoam cooler box. Cold Water is pumped through two sets of coiled copper tubes. The coil becomes freezing cold and starts to condensate . Dew gets collected on the coil and is captured by a drip pan which is placed under the coil. The copper tubes are wrapped around a soup can to get the coiled shape. The clear PVC hose tube is clamped onto the coil and then connected to a small 12V DC aquarium water pump which is powered by a battery or solar panel. We take two half inch PVC pipes , connect them together with two elbows . Wrap the PVC pipes with some aluminum foil and place the pipes above an aluminum or glass tray. The water pump is then submerged in a chest box or bucket containing ice cold water. The pump is started and water coming out of the box cooler is sent through the copper coil where it will start the condensation process. Here the water is chilled to below its dew point. If the water is warm, it wont cool the copper coil enough for the condensation to occur. The colder the water and the more humid it is out , the faster the process of collecting distilled water. To improve the efficiency , you could squeeze the copper coils together . The more the coils, the more the water you can extract from air .