How to build a Simple Homemade Water Distiller that turns dirty water/salt water into clean fresh pure water

    This project goes over the build of a Simple and cheap Homemade Stovetop Water Distiller.Turn your dirty,salt water into fresh drinking clean water fast.This setup is great for everyday or emergency use. Assembles/disassembles fast for easy portability.

    The material needed to make this distiller are :
    A teapot,10 feet copper coil, corrugated stainless steel or copper tube.

    The water source coupling is connected to a foot and a half corrugated three quarter inch copper pipe that further reduces to the half inch and then this is a connected to a 10 foot roll a half inch copper tubing.

    The three quarter inch threaded two half adapter is soldered to the 10 foot copper coil tubing. Bend the tube into a tight spiral.

    A Stainless steel or copper foot and half corrugated pipe goes into the 10 feet twisted copper coil. The end of the corrugated pipe goes into tea pot or water source connector. A total of 12 feet of coil.

    The steam rises without bringing any of the impurities along with it. The steam travels through the coils and slowly cools and condenses. It finally condenses back to its liquid form and drips out as clean water.

    In order to make it even go faster, put some cold towels around the coil or even submerged in water. A little bit of aluminum foil over the top is kept and the copper tube is extended down a little bit into the glass jar. Everything stays completely tight the whole time.

    You can make this distiller with that single corrugated copper tubing, but the more copper we add, the more time it has to condense down into purified liquid water. During the test,we have managed to acheive half a gallon in 2.5 hours.

    You can use this on the stovetop, rocket stove campfire, even a parabolic concentrator like dish cooker. Anyway to get that water boiling, then just hook it up like this. Makes tons of clean water really fast.



    RECENT POSTS YOU MIGHT LIKE
    • DIY Video:How to build a Homemade Double Barrel Garage Heater out of Old Water Tanks .Efficient,clean burn and cheap!
      This project goes over the build of Double Barrel Stove out of two old scrap water heaters for the shop. The first step is to disassemble both the old electric hot water heaters to get their tanks out. Take a grinder and cut a section off from the top of the water heater tank. This tank will become the bottom tank. Remove any calcium and mineral that ends up developing deposits inside the bottom of the tank. Take a 12 gauge plate steel and put our top drum upside down and scribe a circle out of them from the end and cut it. Weld the steel piece onto the drum. You need to do the same for the other drum too because with these double barrels, you are basically making two stoves, just connecting them in the middle. Now both the top tank and bottom tank ends have been polished and cleaned .Remove any insulations, paints and glues from them if they have any. Make sure all the rough pieces on the tank are welded on ground down. Cut a small piece of pipe that acts as stack between the 2 tank. Next step is to add a small support bracket on the top of the bottom tank that will help support the top tank. Cut a hole on the bottom tank .This will be where the stack goes between two of them. Fill the drain plug down at the bottom . Take the top tank, cut and weld the top exhaust stack that will be six inch outlet for the smoke. We also add a six inch inlet that goes up to the top that forces your your smoke and the gas has to go across the length of the barrel. The bottom barrel will be connected to this. Both barrels are welded together, the bottom barrel is welded onto the mid stack which connects the top barrel with the exhaust stack. In order to support the barrels, we take the scrap pipes lying around and make legs as a support structure for the stove. Next is the door fabrication. We cut a hole for the door in the bottom barrel. A couple of hinges, door catch are welded on to this end. An air inlet pipe is threaded onto a plate. The whole unit is then attached to the door. A handle is attached to the inlet pipe so you can open and close whenever you want to control the flow of the air intake. https://www.youtube.com/watch?v=fTj4pjJ4DT0
    • How to build a Homemade Wooden Bandsaw Mill from Scratch.Step by step build Instructions
      This project goes over the build of a simple Homemade Bandsaw mill that can that turn hard maple into smaller lumber . The first step is to make the wheels of the mill. Here we use a three quarter MDF board to make this. The wheel size is 16 inch. We use a beam compass to cut circles and cut two wheels out of them. We make a seven and half pulley for the wheel using a three quarter inch plywood and drill a five eighth inch hole into the middle where the shaft goes. We take some hot melt glue and glue the stock collar onto the pulley and tighten it with a set screw so as to stop it from spinning. Before joining the wheel and pulley together, we make another small disc to go in between to act as a spacer .We glue the pulley to this spacer and from spacer to the wheel. Two wheel bearing blocks are bolted to the wheel on both sides using 4 three eighth inch threaded rods. Make sure that the threaded rods are tight inside the hole in the wheel, but the bearing blocks itself can move around. One way to keep these bearing blocks in place so that they dont move side to side is to apply some construction adhesive to the corners. Next step is building the frame for the saw from salvaged 2 X 4 boards. Make sure that the 2X 4's are straight. Take the bench hand plane and smoothen the edges so that the boards sit flat. It takes several shallow passes flipping the woods each time to get rid of all the twists and warps. Two frames pieces hold the wheel in ,the stationary drive wheel is placed eight and half inches from the end. Two five eighth inch holes are drilled on both the frames so that axles fits in there neatly. On the other side, one holes are drilled that gives the room to adjust the wheel. We also make an adjustment collar out of plywood that is bolted into the frame and the shaft . The collar can be moved to adjust the wheel. We also place couple of pieces across the frame and secure them tight so that the supporting boards are locked in position. On the other side we install the front wheel or top wheel. This wheel needs to move back and forth to put tension on the blade. It also must have a tracking mechanism. For that we make a two small piece that locks into the shaft on the front wheel and slides back and fourth. A guide piece is drilled onto to this piece . A one inch hole is drilled into our slider piece and a three eighth inch threaded rod is secured in there with a nut and washer. These rods help put tension on the blade and also adjusts tracking. Before putting the blades on the wheels, we put silicone caulking on the wheels to smoothen it out .These have advantage over bicycle inner tubes as it doesn't drape down over. The legs are attached to the frame using gusset blocks. To put the motor onto the frame , we take a melamine board and screw them aside the stationary wheel using a cross board. This piece of melamine not only supports the motor, it also helps to brace up the top to keep that from rocking. Secure them tight so that it resists moving while the cutting is going on. Next we make blade guides near the bottom to make a guard for the blades just in case it snaps and flies off. The blade guides are made of small piece of steel angle that is glued to a ceramic piece. The way blade guides work is that they don't actually touch the blade when it is running. It is only when the blade tries to move up or down that it will constrain it and keep it on track and prevent it from twisting. A thrust bearing made of regular size ball bearings is bolted onto an aluminum angle that is further attached to the blade guide. We make a dolly cart out of 2 X 4 boards and some castors to place the big maple logs and move it effortlessly through the blades . The castors are screwed in the ends using quarter inch holes. The castors are fixed in such a way that it moves only in one direction back and forth. https://www.youtube.com/watch?v=rhFEVf8zZkg&list=PLQl9KPrpiIH9Sk0wEiN9d0ANUOK-ntV-i
    • How to Recycle Old Used Laptop Batteries to make a DIY 24V 72AH Emergency Backup Battery System
      This project goes into the build of a 1.72kwh emergency backup battery system out of old and used laptop batteries and an old military surplus ammo box. The materials you need to build this project are lithium ion 18650 batteries from old laptops, 4X5,3X5 cell holders, ammo can, 40 Amp BMS or Battery management system, spot welder, fused nickel strip, heat shrink, kapton tape. First we determine how many batteries that we can pack inside the ammo box. In our case, we have 2 packs of 91 18650 cells , a total of 182 cells. We take the 4 X5 and 3 X 5 cell holders and connect them to make a couple of 7 x 13 cell holders. To make this 24V lithium ion battery , we need a 7S ( 7 cells in series connection) combination . A single lithium ion cell has a nominal voltage of 3.7V . To make a single long 7S configuration battery , we connect 7 groups of 26 cells in series to get the 25V nominal voltage. The cells used in the build are Samsung ICR18650 - 28A with a capacity of 2800Mah .The cells are rewrapped with heat shrink and added an insulator disk at the positive side of the cell for safety. The cells are installed on the holder in such a way that the first 26 cells are in a same polarity and are connected in parallel. Next 26 cells are installed with opposite polarity and is the connected in series with the first 26 cells . The rest of the cells are connected in the similar way to make a final 7S 2P ( 7 series and 2 Parallel ) configuration with max capacity of 26 X 2.8mah or 72.8 amp hours. A four wide fused nickel strip is used to connect the batteries in series. The nickel strip is placed over the first 4 cells and spot welded in place using the sunkko spot welder. Each cell is individually fused in case there is short circuit or malfunction. The nickel strip connects the first two rows in parallel and then connects the next two rows in series . Similarly, to complete the series connections, the nickel strips are placed and welded on the opposite side of the pack in such a way that it wont short out the connection by coming in contact with the most negative side of the battery. We take 0.15mm standard nickel strips to connect the positive ends of the whole pack together. The last 2 rows of most positive end are connected together using the nickel strip . Small pieces of nickel strips are placed across these two rows to connect them in parallel . The pieces are bent so that it can be connected to a separate copper busbar. The separate 2 battery pack of 7 X 13 cells are connected together by the nickel fuse strip in such a way that one of the pack is flipped on top of the other. The nickel strip that connects the first 3 connection on the 1st pack is bent to connect the 4th connection on the other pack. A 90 degree bent on the last row of the 4p fused nickel strip is welded on to the first battery pack. A piece of kapton tape is placed over the nickel strip to insulate it and hold it together. The bent nickel strip on the first pack is placed on the other pack is such a way that the fuses are perfectly aligned . Then it is welded using a spot welder. A one sixteenth inch ABS plastic is placed in between the two packs. The second pack is now slowly folded over the top of the first pack. The whole pack is then wrapped around with the kapton tape so that it doesn't move around. The last three unconnected terminals on one side of the battery pack is connected to the single row of unconnected terminal on the other side with help of four nickel strips. The 4p fused nickel strip is cut to connect the 3 sides and the other side. To connect the main negative and the positive tabs , we attach a THHN copper wire across the both the terminal ends. The extended nickel connections are folded across the wire to hold it into place and soldered . The terminal wires are then connected together with XT90 connector. Next step is to connect the BMS or Battery management system to the pack . This is a small circuit board which is used to protect each cells of the battery pack from overcharging and becoming unbalanced and getting damaged. It stop the over draining when the cells are fully charged. The BMS used here is a 7S 24V with charge current of 20A and discharge current of 40A. It has two negative leads, one connecting the battery and the other for charging and discharging. The BMS also has 8 sense or balancing wires which are connected to each series connections on the battery. The black wire is connected to the most negative terminal of the battery. The first red wire is connected to the first series connected group of cells, the second red wire is connected to the second series connected cells and so on. The last red wire is connected to the main positive terminal of the battery. A heat shrink is wrapped around the whole battery pack for added safety . Before inserting the battery pack into the ammo box, a hole is drilled on the back side of the ammo can to allow the cables from the battery to pass through. Also a small piece of one sixteenth inch ABS plastic is placed at the bottom of the ammo box as a support and insulation. The battery is slowly dropped into the box . The BMS is placed on the top and is connected to the XT90 connector and the balance wires from the battery. The B- terminal on the BMS is connected to the XT90 connector on the battery. The black wire on the BMS is the charge and discharge lead. To provide extra insulation between the battery pack and the the ammo box ,we attach two pieces of the insulting ABS sheet on either side of the box. The lid is put back on the box and the battery build is complete.