How to build a simple and effective Multi Purpose Waste oil Aluminum Scrapping Foundry / Forge out of Scrap Metal

    This project goes over the build of a convertible waste oil powered aluminum foundry / forge made out of recycled materials. Waste oil burning does get more than hot enough to melt down aluminum, which has a melting point of about 660.3 degree celsius.

    The materials you need for this project are old 10 gallon propane tank for the foundry, air compressor tank for the waste oil burner, blower from a car , three eighth inch hose and a brake line for feeding waste oil from a bucket, 12V marine battery for powering the blower.

    We take a car heater blower and house them inside an old tin can for the air intake. This is soldered to soup can and one and quarter inch schedule 80 pipe .This feeds air into the burner vessel.

    The fuel source which is the waste oil is drip fed from a five gallon jug with a brass gate valve. It is connected to the blower pipe through a three eighth inch hose and a metal brake line.

    The waste oil burner is from an old air compressor tank .It has a two inch cap on the top where we start the ignition and light the system. The pipe from the blower goes half an inch into the burner at an angle. This generates a cyclone vortex effect . We want to make sure that the oil and air are very well mixed together. In order to sustain combustion on something that’s so difficult to ignite like waste oil, we have to have a source of heat so it can actually atomize, turn into a vapor where it will burn very easily and very effectively.

    The outlet from the burner is connected to the foundry propane tank through a three inch piece of axle welded with a rotating coupling piece. This can be rotated independently so that the foundry can be rotated to a forge mode with the help of a lever.

    We mark and cut the top of the propane tank that essentially forms the body of our foundry. Next, we are going to need to put a lining on the inside , probably about two and a quarter inches thick. This acts as an insulator. Here we use a 50% mix of plaster of paris and play sand. The propane tank is filled with the mix and the air compressor is submerged in the center to form a mould. We let the tank sit for 24 hours to cure before we remove the air compressor out of it.

    Next step is to create the hole into the side of tank that will be the outlet of our waste oil burner. The hole is cut at a height so that the the aluminum wont run down and back flow into the oil burner tank. We place a three inch axle through the hole that is welded to rotating coupling . This coupling attaches to the outlet of the oil burner.

    One the other side of the propane tank ,we add a small lever system with a latch to manually put the foundry into a forge mode.
    A one inch water pipe is connected to the tank .Inside of that one inch water pipe is this bit of one inch shaft with a hole drilled in to accept a three eighths inch bolt. A rebar with a latch mechanism is welded vertically to this pipe. The latch is pulled to pulled and the foundry is rotated into forge mode.

    The foundry sits on a cradle during the forge mode .The cradle is made out of two inch flat bar. The frame is constructed from one and a half inch by one and a half inch angle iron that I had laying around.

    To start the system , we use a little piece of rag cloth and poke it down into the inlet of the ignition port of the oil burner. We apply a little waste motor oil and start the ignition. Once the flame begins , we apply power to our blower motor by connecting it to the 12V battery.



    RECENT POSTS YOU MIGHT LIKE
    • How to build a Simple Homemade Wood Burning Stove heater with Heat Exchanger for your Garage .No Electricity required and Inexpensive…..
      This project goes into the build of a homemade wood burning heater with a heat exchanger for your garage . This heater is build from a recycled old propane tank . The other materials you need to build this heater are 55 gallon drum, fan blower, quarter inch steel plates , eighteen 2 inch steel pipes for the heat exchanger, welding unit, plasma cutter. Before cutting into the propane tank , make sure to clean the tank so that there is no residual gas left in it . Cut both ends of the tank using the plasma cutter. Now we cut a 30 inch length piece from the tank .This acts as a main body where the heat exchanger pipes are installed. The heat exchanger consists of 18 two inch pipes that run the length of the heater from front to back. Two quarter inch steel plates are welded at the ends of the propane tank . Before doing that we make 18 holes at both the ends of the steel plate. This is done to install the heat exchanger pipes across the length of the tank. With the help of an eighth inch hardboard, we make a template for cutting the 18 holes out of the steel end plates. The hardboard acts a guide for the plasma cutter to cut the holes. The pipes for the heat exchanger are cut 31 and half inches long. Half inch sticks out at both the ends of the heater. They are welded to the steel end plates at both ends. The opening for the door at the end of the heater for the wood intake has a dimension of 16 inch X 12 inch . A similar template is placed on the end plate and the opening is cut using the plasma cutter. A frame around the door is made using a three quarter inch by three sixteenths inch flat stock .This is used for the door opening and to give the door something to close up against. Hinges are welded near the door opening for attaching the door. The locking mechanism for the door to hold it shut is made using a flat stock and couple of bolts . The bolts are welded onto the flat stock and attached inside the heater just beside the door . The handle made of a 90 degree round stock is welded to couple of washers and the door is sandwiched in between. The end plates along with the door is welded onto the body of the heater at both the ends and a hole is made at the top of the propane tank body for installing the flue exhaust pipe. A small hole is cut near the door and a damper in the form of a simple sliding door is attached to the hole that will control the airflow into the heater. A section from old 55 gallon steel barrel is cut and welded onto the backside of the heater .An inexpensive fan blower is attached to this 55 gallon drum . This is installed to concentrate the air that is going through the heat exchanger pipes. The flue pipe is welded onto the top of the heater so that the harmful smoke and gases escape through the exhaust . A grate is placed into the heater through the door opening , wood pieces are introduced and the we start firing the heater. After few minutes , the fire will heat the heat exchanger pipes . The fan blower is turned on and the hot air is blown through the pipes into the garage . https://www.youtube.com/watch?v=-gwiT7Ps1F0
    • How to build a Homemade Wooden Bandsaw Mill from Scratch.Step by step build Instructions
      This project goes over the build of a simple Homemade Bandsaw mill that can that turn hard maple into smaller lumber . The first step is to make the wheels of the mill. Here we use a three quarter MDF board to make this. The wheel size is 16 inch. We use a beam compass to cut circles and cut two wheels out of them. We make a seven and half pulley for the wheel using a three quarter inch plywood and drill a five eighth inch hole into the middle where the shaft goes. We take some hot melt glue and glue the stock collar onto the pulley and tighten it with a set screw so as to stop it from spinning. Before joining the wheel and pulley together, we make another small disc to go in between to act as a spacer .We glue the pulley to this spacer and from spacer to the wheel. Two wheel bearing blocks are bolted to the wheel on both sides using 4 three eighth inch threaded rods. Make sure that the threaded rods are tight inside the hole in the wheel, but the bearing blocks itself can move around. One way to keep these bearing blocks in place so that they dont move side to side is to apply some construction adhesive to the corners. Next step is building the frame for the saw from salvaged 2 X 4 boards. Make sure that the 2X 4's are straight. Take the bench hand plane and smoothen the edges so that the boards sit flat. It takes several shallow passes flipping the woods each time to get rid of all the twists and warps. Two frames pieces hold the wheel in ,the stationary drive wheel is placed eight and half inches from the end. Two five eighth inch holes are drilled on both the frames so that axles fits in there neatly. On the other side, one holes are drilled that gives the room to adjust the wheel. We also make an adjustment collar out of plywood that is bolted into the frame and the shaft . The collar can be moved to adjust the wheel. We also place couple of pieces across the frame and secure them tight so that the supporting boards are locked in position. On the other side we install the front wheel or top wheel. This wheel needs to move back and forth to put tension on the blade. It also must have a tracking mechanism. For that we make a two small piece that locks into the shaft on the front wheel and slides back and fourth. A guide piece is drilled onto to this piece . A one inch hole is drilled into our slider piece and a three eighth inch threaded rod is secured in there with a nut and washer. These rods help put tension on the blade and also adjusts tracking. Before putting the blades on the wheels, we put silicone caulking on the wheels to smoothen it out .These have advantage over bicycle inner tubes as it doesn't drape down over. The legs are attached to the frame using gusset blocks. To put the motor onto the frame , we take a melamine board and screw them aside the stationary wheel using a cross board. This piece of melamine not only supports the motor, it also helps to brace up the top to keep that from rocking. Secure them tight so that it resists moving while the cutting is going on. Next we make blade guides near the bottom to make a guard for the blades just in case it snaps and flies off. The blade guides are made of small piece of steel angle that is glued to a ceramic piece. The way blade guides work is that they don't actually touch the blade when it is running. It is only when the blade tries to move up or down that it will constrain it and keep it on track and prevent it from twisting. A thrust bearing made of regular size ball bearings is bolted onto an aluminum angle that is further attached to the blade guide. We make a dolly cart out of 2 X 4 boards and some castors to place the big maple logs and move it effortlessly through the blades . The castors are screwed in the ends using quarter inch holes. The castors are fixed in such a way that it moves only in one direction back and forth. https://www.youtube.com/watch?v=rhFEVf8zZkg&list=PLQl9KPrpiIH9Sk0wEiN9d0ANUOK-ntV-i
    • How to build a simple and effective Multi Purpose Waste oil Aluminum Scrapping Foundry / Forge out of Scrap Metal
      This project goes over the build of a convertible waste oil powered aluminum foundry / forge made out of recycled materials. Waste oil burning does get more than hot enough to melt down aluminum, which has a melting point of about 660.3 degree celsius. The materials you need for this project are old 10 gallon propane tank for the foundry, air compressor tank for the waste oil burner, blower from a car , three eighth inch hose and a brake line for feeding waste oil from a bucket, 12V marine battery for powering the blower. We take a car heater blower and house them inside an old tin can for the air intake. This is soldered to soup can and one and quarter inch schedule 80 pipe .This feeds air into the burner vessel. The fuel source which is the waste oil is drip fed from a five gallon jug with a brass gate valve. It is connected to the blower pipe through a three eighth inch hose and a metal brake line. The waste oil burner is from an old air compressor tank .It has a two inch cap on the top where we start the ignition and light the system. The pipe from the blower goes half an inch into the burner at an angle. This generates a cyclone vortex effect . We want to make sure that the oil and air are very well mixed together. In order to sustain combustion on something that's so difficult to ignite like waste oil, we have to have a source of heat so it can actually atomize, turn into a vapor where it will burn very easily and very effectively. The outlet from the burner is connected to the foundry propane tank through a three inch piece of axle welded with a rotating coupling piece. This can be rotated independently so that the foundry can be rotated to a forge mode with the help of a lever. We mark and cut the top of the propane tank that essentially forms the body of our foundry. Next, we are going to need to put a lining on the inside , probably about two and a quarter inches thick. This acts as an insulator. Here we use a 50% mix of plaster of paris and play sand. The propane tank is filled with the mix and the air compressor is submerged in the center to form a mould. We let the tank sit for 24 hours to cure before we remove the air compressor out of it. Next step is to create the hole into the side of tank that will be the outlet of our waste oil burner. The hole is cut at a height so that the the aluminum wont run down and back flow into the oil burner tank. We place a three inch axle through the hole that is welded to rotating coupling . This coupling attaches to the outlet of the oil burner. One the other side of the propane tank ,we add a small lever system with a latch to manually put the foundry into a forge mode. A one inch water pipe is connected to the tank .Inside of that one inch water pipe is this bit of one inch shaft with a hole drilled in to accept a three eighths inch bolt. A rebar with a latch mechanism is welded vertically to this pipe. The latch is pulled to pulled and the foundry is rotated into forge mode. The foundry sits on a cradle during the forge mode .The cradle is made out of two inch flat bar. The frame is constructed from one and a half inch by one and a half inch angle iron that I had laying around. To start the system , we use a little piece of rag cloth and poke it down into the inlet of the ignition port of the oil burner. We apply a little waste motor oil and start the ignition. Once the flame begins , we apply power to our blower motor by connecting it to the 12V battery. https://www.youtube.com/watch?v=l95fkSaaOEE