How to Dig a Shallow Well from Start to Finish for offgrid homesteading

    This project goes over how you can dig your own shallow well using simple tools that you can get from your local garden store. The materials you need to dig and install a well are as follows. A customized Seymour AUA2 Post Auger to dig the hole. A Shovel is used to move the pea gravel and dirt out of the way.

    A Four inch casing PVC pipe that is going into the hole that is dug and this is going to hold the water until you need it. One and one fourth inch threaded adapter. This connects the bottom of the casing pipe to the foot valve. The foot valve is one and one quarter inch. This valve allows the water to come in and not go out. This helps to keep the pump primed.

    A water well pump pipe which is basically a one and one quarter inch PVC pipe. This will pull the water from the bottom of the well bringing it to your pump. The length of this pipe is going to be determined by how deep your well is. It should be at least a foot shorter than the depth of your well. You don’t want this pipe sitting on the bottom because it would just be sitting in sediment and it will be clogging things up.

    A pitcher pump that has a one and one quarter inch threaded water inlet at the bottom. A closet flange. It makes mounting the pump to the top of your well four inch casing pipe very easy and it also helps keep things clean. Basically you would just set this inside you your four inch pipe, drill a hole out of the middle of a board, screw that to the top of this flange then mount your pump to the board that you have fastened to this. A one and one quarter inch threaded adapter. This will screw into the bottom of your pitcher pump and in turn, it will connect to the pipe bringing water to your pump from the bottom of the well. Teflon tape, PVC glue.

    Pea gravel – This will go down around the casing pipe of the well. The amount of pea gravel you need is determined by the depth of the well and water height. Quikcrete or aerated concrete to cap the top of the well. This prevents groundwater contamination and keeps stuff from finding a way to easily get into your well.

    To find the spot for the well, we use couple of coat hangers as dowsing roads. We take a drinking straw ,cut it in half and slide it over the coat hangers. This helps us in not using our hands or fingers influence while dowsing. Also it is easy to rotate the rods within the straws. The rods are kept parallel to the ground . If the rods cross each other , then mark the spot on the ground directly down the cross . This is the ideal spot for the well.

    The auger used for digging the hole for the well is modified from the default Seymour Post hole auger. We use a custom 5 foot 11 gauge one and half inch square tubing as the extension for the auger . The handle of the auger is a three foot three quarter inch pipe welded to a four inch 11 gauge square tubing.

    We start digging into the the spot that we have found earlier using the dowsing rods. Pay attention to the changes in the color of sand , because that can give you clues as whether you are getting closer to water. We extend the auger using the square bar tube once the auger handle is near the ground. Once you have hit wet clay, there is going to be suction around. We twist and pull at the same time to get the auger out of the hole in this situation.

    Next, we put the 20 foot PVC casing pipe into the hole . We cut slots using a reciprocating saw on the pipe one foot from the bottom of the well to the top of the water level to allow the water to flow into the well. Pea gravel is poured around the sides of the pipe all the way up to the slots .

    The remaining hole area around the pipe is packed with sand and clay. We seal the well by packing it around the sides with quickrete cement. This helps the water not to be able to run down into your well but around it.

    We lower the one and one quarter inch well pump pipe with the foot valve at the end into the PVC casing pipe. A four inch drain flange is secured on top of the casing pipe .

    A pitcher pump is then attached to top of the pipe. To prevent the pump from moving, it is bolted to the board where the flange is installed. To prime the well, we pour some water down through the pitcher pump. Pump out the dirty water until it is clean.



    RECENT POSTS YOU MIGHT LIKE
    • How to build a Multi Use Simple Homemade Wood Gas System from Scrap Materials that can be used as a Generator,Cooking Stove and Lantern
      This project goes over the build of a simple gasification system that functions to produce wood gas for running a generator, a cooking stove and for lanterns. We feed the wood chips and other materials through the opening at the top of the gasifier ,the air also gets drawn in from the top .The air would drop through the wood mass, down to the reduction zone and gets collected down at the bottom of the tank through the output pipe . The materials needed to build this down draft style gasifier are a 3 old propane tanks, old steel sheets, wood pellets. The first step is to make sure that propane tanks are empty .Remove the handles from the top of the 3 propane tanks and unthread the valves. Cut the top portion from 2 tanks and stack the body of the tanks on top of each other and weld it. One of the cut out top pieces can be used a lid . The bottom portion of the lower tank is cut open to create the reduction zone of the gasifier. To make the reduction point, we take the scrap steel sheet and make a five inch wide small tube of the them and weld them to the bottom third propane tank . The bottom five gallon propane tank is used as a ash bin where all the ash is going to get caught and as an outlet for all the gases coming out of the system. The top portion of this tank is cut in such a way that it fits the reduction zone collar of the secondary tank. Make sure that both the tanks fits nicely together so that you can pull the inner chamber out of the bottom ash tank to remove it, dump the ash catch out and use it again and again. The top of the upper tank is cut open .This acts as the feed area where all the wood pieces are dropped in. We make a screen with holes using a 20mm hole saw cutter from the leftover cutouts of the propane tank. We are gonna mount this screen inside the gasifier lower reduction zone. A hinge and a wire is attached to the screen so it can open and close. This gives us the ability so we can shake the screen if it plugs up with ash or other materials. The wire goes through the reactor up to the top . We have a pressure relief system installed on the lid of the gasifier. If anything were to happen inside of the gasifier , the build up pressure can be made to escape through the top lid .This is done by hooking up two springs on both sides of the lid through small loops .The springs on both sides is attached to hand levers. We drill 8 half inch diameter holes just above reduction zone area and put thick steel tubing through them to the center of the chamber. The airflow will go in and be drawn down through the center of the reduction zone that helps in efficient burn. The pipes are curved in to the chamber so that it does not interfere with any wood mass as it goes into the reduction zone. We add plugs along these 8 tubes to regulate the air flow into the system. Next step is to add the draw fan to the gasifier. Here we use a pellet stove fan .We add a 2 inch plate over the face of the fan and a threaded pipe to seal any air going into the gasifier. We start up the gasifier by putting some chopped wood through the top and use the fan to get the wood gas producing out of the bottom outlet pipe. https://www.youtube.com/watch?v=h9vuphZe8iU
    • DIY Video :How to build a Wood Stove that runs a generator, produces gasoline,runs a fridge and act as a water heater at the same time
      This is a wood powered gasifier stove that produces gasoline runs your generator, runs your propane hot water heater, heats hot water for you all off the grid. A simple design of a mini gasifying woodstove prototype here you've got some open latches, open up the door, the doors got the baton handle so it naturally stops on the downfall Inside the firebox, I've got a gasification style system built in there.One of the key things about a gasifying woodstove is that not only can I run it in a typical gasification wood stove manner, heat my home. But if I reverse that action with a fan and a draw system underneath the stove, with the ability to shut off the flow out the chimney pipe, and then draw down underneath the stove, reverse the action of the system, I can produce syn gas that can go outside and into a generator. This system has little latch up here at the top drops open so you can get in there work the material around.By actually pulling the little latch out and the bottom of the main gasifier inside of there to shut it and rotate it locks into place .It is actually a dump plate on the bottom of the main gasification chamber so that all the ash and all the coal that's not burned can dump out of the system into a tray below. A secondary burn system with two layers of stove pipe, one smaller inner diameter stove pipe and one larger one is made for a better burn to take place with fresh air inlets right there in the chamber. The outer sleeve stops below the bottom allows air to travel up in between rise up to the pipe.There is a set of burner holes that makes sure to mix fresh oxygen that creates a swirl in there and helps burn any leftover syn gas in the production system. So there's no smoke coming out of this in the end. Inside the woodstove is the inner chamber holds all your material, it gets hot and then creates an airdrop between this outer wall and the inner chamber wall that airdrop comes out these holes mixes fresh oxygen into the top of the system with the smoke and burns it. The bottom holes allow air to dry in from the bottom to complete that burn as the material burns down to the bottom. It also works slightly as a venturi system as air is drawn up these walls towards these holes, creates a vacuum down here at the bottom holes and pull some of the smoke out a downward draw into the system and pull some of it into here helping mix some of the smoke With the air and will swirl it so it'll burn cleanly. The single air inlet hole is used to pull the smoke out of the bottom to reverse this process to put syn gas out of this stove outside into a generator. There is inner set of holes in the bottom of the stove pipe.This helps mix air between the walls.The air gets drawn up between the wall since the inner pipe is longer than the outer pipe which mixes fresh air and completes the secondary burn to make sure there's no smoke coming out of this pipe. This is gonna be the bio crude oil production system here which is basically another term for a creosote that you produce from syn gas production, otherwise known as gasification production. It's got just a single pipe rolling out of the backside of it which is connected to a creosote collection container. As this gas starts to cool, it's going to come up to here it's going to work its way up hill, as it does so the hydrogen inside of the gas will be the lightest of all the gas is traveling uphill and definitely make it over the top much of the creosote we built re drip down into the second collection container here. Now the rest of its gonna go up cross through the pipe here and come down to a condenser The reactor shown here is made of two of five gallon steel cans.I cut the top off of one and the bottom off of another and slid them over each other. So they make a really long slide seal over each other one pipe, as you can tell here, welded in. With an elbow, it's a one inch pipe coming out of the back of they're welded in with an elbow. The downward slope of the pipe force the smoke to release as much of this crude as it possibly can. Because it's actually wanting to go uphill, which would be easy to smoke not going to cool real quickly. by forcing it slightly downhill, we're forcing a lot of that heat energy out, making sure it's releasing a lot of that, let's call it creosote or bio crude. It also allows for the creosote to roll down the bottom of the pipe into a container. The gas moves through a reduction point which reduces the pressure.The gas gets refined and reduced slightly in volume through the system. Hydrogen, carbon monoxide and all the rest of the lighter gases are going to easily flow up this pipe through thermodynamic pressure. Now you've cooled a lot of that gas by running it downhill, trying to bring in into this lower container as much the second grade creosote as you can, or biocrude. Now by running it up hill again, you can really force all the heavy hydrocarbons and other elements inside of this to focus out of the hydrogen gas and the carbon monoxide. This is a downhill pipe that's going to go anti the direction of natural thermodynamic processes that'll help condense out or precipitate out some of the oils at a much faster rate than it would be if that pipe was going the natural thermodynamic flow direction.The first catch is going to be the heaviest and thickness of the current Crude oil. It goes down that pipe from a reduction point here into the secondary catch.This comes up the hill here at the lighter gases not yet condensed, rises across loses a lot of energy and now is once again restricted into a quarter inch copper gas pipe into a 5 gallon water tank with a 20 loop condenser coil inside . The pipe out of that tank runs into a one gallon pickle jar. The next pipe comes out of the top of the jar, we're not actually trying to put it down too far because you don't want to bubble and once it starts to fill with crude oil, you just want to grab them the lightest of the gases, the hydrogens and the nitrogen, carbon monoxides and others that are still left within this system you want to grab, grab that right off the top. Now it comes up this pipe here goes through the T and once again we have a secondary condenser that this goes through now it's about four or five loops going through there, comes out through there. And that's where the liquids gonna condense from this condenser that's where it's going to be caught. The liquid will be flowing, dropping the jug and the lighter Smoke will continue on now down the pipe. The result of the bio crude oil project collecting 4 grades of oil.So the next step of this project now is to put this all through the refinery, which will actually be connected inside the woodstove that made all of this. So in the end, what we'll have is all the liquid being produced the crude oil once again, flow back to the woodstove go through the refinery out the refinery tower, and on the other side, we'll have a high grade fuel to use in any engine. https://www.youtube.com/watch?v=M1imlOX2pGI
    • How to Heat your Home or Garage for Free by building Solar Air Heating Collectors that uses no electricity or batteries
      Solar heat collectors are a good supplemental heating source that can provide homeowners with free heat for their home when the sun is shining. Solar collectors are a box like structure that capture the energy from the sun and convert it into usable energy for heating purposes. Inside the collector solar energy is simply converted into usable thermal energy. On the front side of the solar collectors . a clear panel or glazing material typically polycarbonate sheeting, single pane glass ,double pane glass face towards the sun and allow the sunlight into the collector box. On the inside of the collector box is a heat exchanger or a absorber. The heat exchanger or absorber is responsible for transferring the heat of the sun into a usable thermal heat source. The heat exchanger is suspended or attached inside the collector box and should be coated flat black with a high heat temperature resistant paint. The flat black paint helps to absorb the heat energy from the sun. It is very important to utilize a flat finish black paint inside the collector box. If the paint has a reflective coating, it will reflect the sun back outside of the collector, which results in lost potential energy. It assists with the entrapment of that heat energy rather than reflecting it away from the collector. Once the sunlight has penetrated the collector box through the glazing, the heat exchanger material and the flat black paint will absorb that heat and begin to warm the air inside the collector. As the air inside the collector and around the absorber warms, it will expand and rise. The expansion of warm air will naturally create a convection current. As the air inside the collector rises, it will continue to pick up heat through friction with the absorber. The air passing over and through the absorber is given more opportunity to gain heat by rubbing against that surface which is being heated by the sun. Now that the air is warm and picking up heat and needs a way to move through the collector box, we install two vents on the backside of the solar collector facing towards the room or space that we want to heat. Through the vent at the top of the collector, the heated air moves into the home , the vent at the bottom allows the cooler air to return back to the the collector. Having a return event at the bottom and a supplier event at the top of the solar collector allows natural convection process. The air inside the collector is picking up heat from the absorber and is naturally wanting to rise up and out of the collector. A natural force of air rising will induce a convection current, which will pull cooler return air from the room or condition space into the bottom of the collector box. The collector creates a convection current inside the room .It removes cooler dense air from the bottom of the room and takes it through the collector where it is warm, and then exhausts the heated air out of the supply duct back into the room. This project goes over the build of an entirely self contained Solar Air Heater using no grid power whatsoever. The unit draws the cold air from the room and exhausts hot air into the room using a 2 5V DC brushless 7 vane case fans. This fans are powered by a 16 Watt Amorphous solar panel. Both the intake and exhaust pipes ore of 5 inch diameter. 9 rows of 17 soda pop cans , a total of 153 355ml soda cans are used for the collector. The aluminum pop cans are painted with a flat black paint to ensure all sunlight is absorbed and not reflected. Also there is a five inch intake and exhaust manifold at the bottom and top of the unit. This ensures that all air travels through the interior of the aluminum cans. To maximize the heat transfer from the sun to air within a given space, we need to build a better heat exchanger. Solar air heating systems use air as the working fluid for absorbing and transferring solar energy. Transferring heat from one place to another by definition is a heat exchanger. When the sun heats the metal, the hot metal heats the air circulating over the metal of the heat exchanger. The job is to capture radiation from the sun and transfer this thermal energy to air via conduction heat transfer. Heat transfer output depends on the rise in temperature and the airflow. In order to minimize heat loss through the plexiglass , we keep the absorber temperature as low as usually possible. The cooler the absorber runs, the less heat will be lost out of the glass. A way to keep the absorber cooler while extracting the same amount of energy from the sun is to increase the airflow. To improve conduction heat transfer without significantly reducing airflow , we disturb the airflow within the solar air tubes . Four holes are put in some of the soda cans to create a baffle that increase the turbulence .These baffle cans are placed evenly across the tubes to distribute the airflow. We place the first baffle cans on the second row from the bottom with the intention of disturbing the airflow early. The second baffle will be located in the 10th can . In order to stack the empty cans, we make an assembly tray "V" shaped support structure using leftover baseboard. The cans are glued together using PL Premium construction adhesive that is water resistant, non shrinking and paintable. The soda cans are positioned on the loading tray and slowly rotated to evenly distribute the construction adhesive. The "V" channel made from baseboards holds the cans perfectly straight. The box for the Solar air heater is made of 5052 aluminum alloy sheets. The dimension of the box are 91 inches tall and 24 inches wide. We use a one inch flange and a metal bending brake to bend the aluminum to make the sides of the box. The top and bottom caps are bend to fit on the top and bottom of the box . When manufacturing the bottom caps, the distance between the bends is decreased by one millimeter to allow the caps to fit inside the solar air box to facilitate drainage. Next step is securing the aluminum box top and bottom .The procedure involves using a smaller diameter drill bit as a pilot and then drilling to final size for the rivet only after the two pieces are mated together. The pieces being held together via cleco fasteners. The function of the cleco is to temporarily hold material in the exact position during the manufacturing process. Two five inches holes are cut at both top and bottom on the box to install the plenums. The intake and the exhaust pipes for the two solar air heaters are manufactured from a single piece of five inch HVAC plenum. These are inserted and secured into the holes using construction adhesive. The back of the box is insulated using two sheets of half inch foam sheet. One sheet of half inch foam is installed on the sides. A pneumatic air file is used to cut the sheets. We install a snap action thermostat in the interior of the exhaust manifold, constantly monitoring the temperature of the air being brought into the dwelling. The intake and exhaust manifolds need to ensure that all air travel through the interior of the cans therefore it is important to have a good seal to each can. This also means that the manifold itself needs to seal well against the interior of the heat box. Nine holes are cut on a two sheets of half inch plywood to make the intake and the exhaust manifolds. These manifolds are secured in place against the cans using PL construction adhesives. The solar air tubes are held tight inside the box using two 1/16th half inch 6063 aluminum extrudes. These lightly applying pressure on the cans holding them firmly against the back of the heat chamber. Three separate coats of high heat black rest-o-leum paint are applied to the box , all within 60 minutes of each other. Clear silicon adhesive will be the primary method of adhering the Plexiglas to the solar air heater. After precisely positioning the glass on top of the heat chamber, I used a 1/8 inch pilot drill to go through the plexiglass. One full tube of silicone is used around the perimeter prior to laying the glass down. We install 2 16 Watt Sailflo Duct Exhaust fans with a capacity of moving 141 CFM (Cubic Feet per Minute) for air . These are powered by a small solar panel. One blowing air into the chamber and one sucking air out. This helps to overcome the additional internal airflow resistance built into the design. The completed solar air collector is installed outside facing south to maximize the exposure to the sun. Once the solar air collector is installed outside , we take the temperature rise between the incoming and outgoing air while moving 141 cubic feet of air per minute from the fans . The calculate the amount of heat transfer we multiply the CFM and Temperature rise with a factor of 1.08. https://www.youtube.com/playlist?list=PL6YanwREcLx7h747VhKjJLClqvBmy5cF5