How to build a simple Homemade PVC Off grid River Pump to pump water from a river or creek

    This project goes over the build of a river pump that can be used to pump water from a nearby river or creek anywhere you want without any external power.It works off of a circular tube, gulping air and water as it rotates.

    It works by harnessing the flow of the river and creating air pressure to push the water further.It pushes water out from the river and up through your hose system, which you can direct where needed.

    To use a river pump, all you need is a nearby river or creek that has flowing water and a location that is deep enough to support your river pump.

    Here are the parts needed for this water pump:
    A 3 inch to 4inch reducer
    A 4 inch to 6 inch reducer
    40 foot ,3/8 inch tubing
    3 inch socket to thread /cap
    Garden hose adapter
    Quick release couplings
    Six,four,two inch pipes

    Take your angle grinder and cut them to four pieces.Connect the pieces together using a PVC cement solvent and make it into a cone that steps down as it goes.

    A window screen is used as a shield on the back.So this design is supposed to be rather streamlined in order to keep debris and stuff from getting caught as the pump works

    The cap at the end of the cone is attached to the swivel piece. It needs to be able to swivel freely on top of this. The hose tightens into this metal swivel piece and gets locked down.

    Next is building fan blades for the front of this pump to spin it.Cut the PVC into 4 equal blades that is 8 inches tall.

    Bolt the swivel piece along with the blade we have just cut.

    Water comes flowing in and hits the blades that is attached to the rotating swivel, makes it move and rotate and then hits the next one in line.

    The end piece is attached to the the PVC cone that we made earlier.Next step is getting our 40 foot hose tubing to get inside the pipe and attach to the swivel end.

    Next step is wrapping the 40 foot hose around the pump .We need to wrap the hose in such a way once the water hits the swivel end,the hose has got to pick up water.

    The Garden Hose is connected to the swivel end of the pump.Place the system along the direction the flow of the river or creek.



    RECENT POSTS YOU MIGHT LIKE
    • DIY Video:How to build a Super Efficient ,Multi Use Homemade Ammo Can Rocket Stove. Inexpensive,Portable and Leaves no smoke….
      This project goes over the build an efficient clean burn multi use ammo can portable rocket stove . Easy to build , small ,portable , leaves no smoke. The reason it is smokeless is because it uses a secondary burn system . Also can be used as a cooking stove. The first thing you need is an old NATO ammo can. Remove the rubber seal that sits around the top of the can and replace it with a stove rope. The stove rope gets compressed when you close the stove with its closing mechanism and the smoke wont escape from around there. One the top, we have the flue made out of 2 inch stainless pipe .It has two sections, upper section slides onto the lower section. In order to build the flue, we take the top of the ammo can, then place the pipe on top and draw around it that gives the circumference. Take a grinder and simply cut across the shape. In order to get a smoke tight seal, we wrap some stove rope around the flue area we just cut and then insert the pipe and use a jubilee clip around the bottom and compress it against the stove rope. Once this gets up to working temperature, it draws cold air in from down below and expels it out at the top. So all the smoke from the stove gets drawn upwards. We use 2 turnbuckles as a stove door closing mechanism. There are two closing mechanisms on this door. One is a quarter turn latch. So you rotate it, the door opens ,you close and then you rotate it and it locks the door closed. Another mechanism is using a long piece of metal. You can turn each of these a quarter turn and that locks the door extremely tight to fit these turnbuckles . The stove baffle plate is made out of 0.8mm thick thin steel. To make it, measure it up against the stove and bent the steel into that shape. The baffle helps in generating more heat as it keeps the air from escaping the burn chamber. A secondary pipe made of galvanized steel pipe comes from back of the stove and comes across the stove through a small hole. The pipe has been drilled with small holes. When the stove is in operation, this draws in cold air from outside, it gets pre-heated on the way down across the burn chamber. And then the pre-heated air rises and is expelled naturally through these holes. And since this pipe is just under the baffle plate, it reignites the smoke and the smoke is burnt on the way across the upper section of the stove. The stove is insulated using fibreglass and stainless steel from three sides inside, helps in efficient secondary burn. You just need enough insulation to get the temperature high enough to get secondary burn. If the whole stove is insulated then the heat would dissipate through the flue instead. The bottom of the stove is insulated using half inch rockwool and on top we have some chicken wire that stops the burning fuel from sitting on the bottom of the stove and being starved of oxygen. It allows the oxygen to get underneath and burn all the way around the wood efficiently. The primary air is drawn in through an air intake at the side of the stove. To attach it to the stove, bend the pipe around the side and place a jubilee clip and stove rope around to insulate it. So when the stove is in operation, you can add sticks, twigs, pellets or anything you want without opening the door. https://www.youtube.com/watch?v=BUz6Ai2yAxE Burn Video : https://www.youtube.com/watch?v=Vd7RFwyQxrI
    • How to build a Homemade Micro Wind Turbine for under $50 that can be mounted anywhere
      This project goes in the detail on how to build a mini wind turbine..The wind turbine is a nice addition to your solar generator system for times when it’s cloudy and you are not receiving as much sunlight as you normally First step is to build some cheap PVC blades, what kind of motor we're going to be using and how we're going to attach this to the motor. We are making six blades or rotors here.What we want to do is we want to cut our PVC pipe to length first. Once you've got it cut to length, then you want to take your your straight edge again and and Marco line down the center and cut it in half. Make sure that you do that on both sides. One on this side, one on this side. And that they're perfectly in the middle so that you'll get two even sides. We need to cut a small little block down at the blade end, where we are going to put a drill hole and put a screw through it so that it attaches to the hub.On the top of the blade, we're going to cut away some of the material to resemble a swept wing, kind of at an angle. These are 14 inch long blades that is attached to the hub using set screws attached to the motor. The 12V motor used here is a 300 RPM geared motor which would be its maximum speed and it produces 600 milliamps when its fully loaded. The motor is placed inside a One and half inch PVC pipe ,another PVC Tee is connected from where the wires will down to the bottom where another 7 foot pipe that act as the tower or pole. The end of the pole goes into a shower drain which is then attached to piece of wood that acts a solid base. For the YAW system at the back end,a tail vane is made of a cheap flashing material that is bolted between an 8 inch piece of PVC.Put a hole through the middle of it with a bolt in between so that it can't move anywhere. We use an an old OSB for the base, size is about seven inches square. And then I just have a piece of treated lumber on the bottom. It's attached to this ball bearings so it can spin around. The Shower drain PVC is placed in the middle through some ball bearings. Route the wiring down through the hole for to connect to the charge controller. Next step is the wiring through the piping.We just need to connect these terminals to the appropriate sides of the motor. https://www.youtube.com/watch?v=6UZ2WtXlVoc https://www.youtube.com/watch?v=fjHW78bMUoY https://www.youtube.com/watch?v=c7a9RSzZKcE
    • How to Generate Alternative Offgrid Power by building a Homemade Waterwheel Hydro Electric System
      This project goes into the build of a homemade alternative offgrid power generation system using a water wheel and flowing water source like a stream or creek. In order to catch the water from your spring or creek , the first step is to build a small dam. This enables us to produce maximum power from the running water wheel . First, We use a 4 inch pipe to divert the water before starting the construction of the dam. With a solid concrete foundation ,we aim to make a 42 inch dam with 30 inch of head . A six inch 36 inches long PVC drain pipe is installed on the high water side .The dam is constructed using four layer of hollow blocks and quickrete blended mason mix .Try raising the water higher to see how much higher it needs to go before it overflow through the sides. The dam board gates made of deck boards are installed in the middle .The back board and the front boards are spaced apart an inch and three quarters. The dam stop gate made of plywood with dimensions of one and half is inserted between the boards . To get a tight seal a half inch rubber tube is stuffed between these boards. With a 13 and half inch treated plywood and couple of 2X6 plywood side boards, the flume is built. The side boards are glued to the plywood base using adhesive sealant and screwed with exterior grade screws. To resist twisting and to keep the width of the plywood steady , four cross spacers are installed on the flume board. To divert the water without having to drain the dam, we make a small trap door in the flume near the opening . The trap door is made seven inches back from the face of the dam. The door is supported by a flange around the back and a stainless steel hinge. The flume is installed on the creek with the help of rebars and supporting deck boards. The rebars are attached to the boards using u-bolts and drill bit. Three more subsequent flumes are attached to each other. The gap between the flumes are sealed with poly foam caulk rope. The waterwheel is made out of a section of 55 gallon HDPE drum . The blades are made of 4 inch PVC drain pipe. The blades are curved so that it retains most of the water making it more energy efficient. 24 blades are attached to the drum using 16th by half aluminum angle pieces. A three quarter inch jack shaft from an old go-kart is used as the drive shaft. This is supported at both ends of the wheel with a help of pillow block bearings. Two 28 inch Circular end pieces made of plywood is bolted along both sides of the barrel using a 6 ten inch long half by thirteen carriage bolts to make the wheel build complete. Two square collar blocks are mounted on to shaft to center them. The holes are larger than the shaft so that the wheel can be adjusted to get the runouts reduced.To center the waterwheel and to adjust the runout of the center shaft , we use four blocks and adjustment bolts around the center block like a four jaw chuck . To install the water wheel securely, a support structure made of 2x4 boards are installed near the end of the flume. The water wheel is secured on these support boards with the help of couple of swivel block bearings. We use an adjustable Unistrut to mount the bearings,sprockets and the motor. This can be adjusted for chain tension as well. The Unistrut will stand vertically on top of the cross support that is under the flume.The Unistrut's are mounted onto the wheel on both the sides with help of bearings and T-nuts. A Number 35 sprocket with 72 tooth is mounted onto the center wheel shaft. This sprocket is connected to a half shaft with 11 tooth sprocket with the help of a size 35 go kart roller chain. A Permanent Magnet Brushed DC motor mounted on 2x4 board is further connected to this shaft via another sprocket. This gear system has a ratio of 30.86:1 Using unistruct angled brackets, the wheel is mounted onto the support board near the flume. The wheel is positioned near the flume in such a way that the water where it meets the wheel is exactly at the top. The charging system consists of a 12V DC emergency standby battery, MPPT charge controller, 300W sine wave inverter . The connection from the water wheel DC motor goes to the charge controller.The charge controller is also connected to the battery. Finally the inverter is connected to the battery which is further connected to a load. To make this charging system secure, make sure to make fuse connection between the components. All these components are mounted on a temporary wooden board. https://www.youtube.com/playlist?list=PLDda5L4aJUB-IuU3SWstKewFvzfv3wJGI