DIY Video: How to build a Homemade Solar Heat Pump System to heat your home through the winter

    This Video shows the build of a DIY Solar Heat Pump System .An air source heat pump consists of an evaporator coil, a condenser, two fans, a compressor, and plumbing lines containing a refrigerant. In simple terms, during the winter the large fan in the outdoor unit pulls cool outdoor air through the evaporator coil which causes the refrigerant inside to absorb what’s called ‘latent heat’ from that air, and then begins to boil and evaporate . Once the refrigerant is up to temperature, it passes through the condenser coil/heat exchanger where indoor air also passes through the condenser’s fins to absorb the heat from the refrigerant and deliver it where it’s needed.A heat pump is essentially an air conditioner working in reverse. Instead of pumping heat from indoors to outdoors, it’s pumping heat in reverse.

    Watch the DIY  Solar Heat Pump System Build Video

    • How to recycle scrap metal in the backyard by building a simple Mini Metal Foundry from start to finish
      In this project, we're using equal parts of sand and plaster to make a simple backyard foundry that's powerful enough to melt scrap metal in seconds. With this homemade furnace, we have the power to liquefy aluminum in the backyard and cast just about any object we can think of. You will need some big bag of play sand and some plaster of paris both of which you can find at your local hardware store for under $20. We are also going to need a 10 quart steel bucket and a tablecloth to cover anything. For this makeshift refractory lining we need One and 1/3 buckets full of plaster Paris or 21 cups, One and 3/4 buckets full of sand or 21 cups and 1 and 1/4 buckets filled with water or 15 cups. Mix everything together. It's really important to get all the dry powder wet and work out any lumps as quickly as possible. And after mixing for a couple of minutes, it should be fairly runny and roughly all the same color. Transfer the mix to the steel bucket upto 3 inches from top. We use the plastic measuring bucket to form the center of the foundry. Let the mixture dry for 3 minutes. Next step ,we turn an old steel fire extinguisher into a custom crucible. Depressurize the tank and unscrewed the valve from the top to make it safe and easy to cut in half with a hacksaw. At this point the plaster should be pretty well set. So let's dump the water from the bucket then use a pair of channel locks to pull the bucket out. Next step is make an air supply port .Using 3/8 inch hole saw and a metal cutting blade, we cut a hole to accommodate the one inch steel blower tube. The blower tube is made of one inch steep pipe ,one inch PVC coupling and one inch PVC pipe.Threads on one half of the coupling screw onto the steel pipe and the slip adapter on the other end simply pushes onto the PVC side easily. Next step is to build a lid to retain the heat.You need a couple of 4 inch U bolts.Make them stand upright into a 5 quart bucket filled with the insulating mix. To relieve pressure buildup, make a vent hole using a 3 inch hole cutting saw. This design works great for venting pressure and gives us the option to melt metal as well without even having to take the lid off the furnace. By the way, if you run out of soda cans to melt, you could try using it as a blacksmithing forge or even a barbecue for summertime grilling. We evenly place 5 charcoal briquettes at the bottom of the crucible made out of steel fire extinguisher, helps smelt the can faster once we fire it up. A hair dryer is taped to a PVC pipe and inserted a couple of one inch couplings to connect the steel tub eat one end and give the blower to a quick release feature. This way it's super easy to take apart and fits into a five gallon bucket for easy storage. The charcoal is filled it to the top and we breathe life into the steel furnace with a propane torch.The hairdryer is set to the low setting and blow a steady stream of oxygen on the charcoal to really heat things up. The lid we made keeps the heat inside so it conserves energy while it's bringing up the temperature. The coolest part is that the crucible lines up perfectly with the hole in the center. The container is three inches wide, which is the perfect size for melting standard size soda cans like these and at temperatures over 1000 degrees Fahrenheit . In order to isolate aluminium, first we remove the crucible making sure we have got a very secure grip with our tongs and slowly pour the liquid into a steel mold. The Soda cans are molded in the form of ingots.The purpose of an ingot is to keep some pure metal handy for when you want to make something cool.
    • Cool DIY Video: How to build a Window Attached Solar heater that gives “FREE HEAT” all winter and acts as Solar Oven as Well !
      Solar heaters are gaining popularity and with good reason- they provide heat. This design uses solar fans to move the heat into the room so its totally off grid and will work during a power outage. Because it is attached to the window it can also be closed by shutting the window and keep the heat inside the unit for off grid solar cooking. This design also allows the unit to be attached all year for ease of use and can keep the heat from entering the home when its not needed. Solar cook all summer, heat all winter; Save money all year!

      Watch Window Box Solar Heater build video

    • How to build a Simple Alternative Power Dual Refrigeration System that uses no electricity
      This project goes over the conversion of an old three way refrigerator unit from an RV into an alternative power offgrid Dual refrigeration system that uses no electric power. This can be really useful in case of a power outage or SHTF situation when you need to keep your food or vegetables fresh. The first step is to strip the fittings on the back side of the fridge , remove all the ammonia system ,clean the inside of it . Here we are incorporating more than one way to use this water for cooling refrigeration system to make it efficient .We will be using cooling effect by brining down the water temperature to cool the box , another way to cool the box is by installing an evaporative system. We take the two pipes coming from the water source around the edges of the box and put some cotton sheets around the sides and let the water cascade down the sheet creating an evaporative effect. We have an inverter and a battery attached to the fridge that is hooked up to a 25W solar panel .The wire from the inverter is connected to 8W Electric Fish tank pump .The water coming from the pump goes underneath and up inside to the lid of the fridge to the condenser coils and then comes back around back into the water source like well or water tank. The full system is recirculated back into the original storage tank where the water is coming from. We keep the fridge in a chest freezer style instead of an upright style. Inside the fridge, we have incorporated 2 poly tubing coils attached to an old heat sink that was already in the fridge. The 100ft coils are attached to the top of the fridge. The cold from that coils will drop down to the rest of the fridge. Next step is to incorporate the evaporative cooling part of the refrigeration system. We start by installing aluminum U channels across all the edges of the fridge. The U channel will hold cotton material inside of them. The water coming out of the outputs from our coils rushes into the channel which is going to wick out into the cloth and run down the cloth with gravity, giving us our evaporative cooling effect . On the corners, we have the U channels interconnected to each other through a bent garden hose in such a way that any extra water flow in the channel can transfer to the the channel that is next. The cotton sheets are stretched around the box and tuck it down into the channels all the way around under the wires such that the wires will hold the channels up and hold the sheet up inside the channel. To even the flow of the water ,we install a tee. Now the water coming from both sides of the channel can leak into the sheet. Also make sure you have an air gap between the sheet and the refrigerator box.